How does subatomic matter organize itself? A low-energy nuclear physics perspective

Xavier Roca-Maza

Università degli Studi di Milano

INFN sezione di Milano

Where can we find neutrons and protons? And in which form? Free? In clusters?

Neutrons and protons in Earth are found in cluster systems:
 <u>nuclei</u>

→ The interior of all nuclei has constant density (10¹⁴ times denser than water) named saturation density
 → Saturation is originated from the short range nature of the nuclear effective interaction

- \rightarrow Neutron in 15 minutes must find a proton or ...
- In heavens, neutrons and protons can be also found as an interacting and unbound Fermi liquid: matter in the <u>outer</u> core of a neutron star

Nuclear Equation of State (EoS)

Unpolarized **nuclear matter** at zero temperature ($10^{10}K \rightarrow 1MeV$) is defined as the **energy** per **nucleon** (*e*) as a function of the **neutron** (ρ_n) and **proton** (ρ_p) **densities** as (*isospin conserving* $V_{nn} = V_{pp} = V_{np}$):

Symmetry energy $S(\rho) \sim e(\rho, \delta=1) \cdot e(\rho, \delta=0)$

Symmetry energy not well constrained

Bao-An Li, Plamen G. Krastev, De-Hua Wen & Nai-Bo Zhang EPJ A 55, 117 (2019)

What can we learn from the Earth and the Heavens about the Nuclear Equation of State and, thus, how subatomic matter organize itself?

(some examples)

From Heaven: Neutron Star Mass

Nuclear models that account for different nuclear properties on Earth predict a large variety of Neutron Star Mass-Radius relations \rightarrow Observation of a 2M_{sun} has constrained nuclear models.

Tolman-Oppenheimer-Volkoff equation (sph. sym.):

$$\frac{dM(r)}{dr} = 4\pi r^2 \mathcal{E}(r);$$

$$\frac{dP}{dr} = -G \frac{\mathcal{E}(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\mathcal{E}(r)} \right]$$

$$\left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2GM(r)}{r} \right]^{-1}$$

 $\mathcal{E}(r) \rightarrow \text{degeneracy pressure from}$ neutrons $\rightarrow M_{\text{max}} = 0.7 M_{\text{sun}}$

Nuclear Physics input is fundamental

Figure 3 Neutron star mass-radius diagram The plot shows non-rotating A two-solar-mass neutron star measured using Shapiro delay - P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts & J. W. T. Hessels - Nature volume 467, 1081-1083(2010)

From Heaven: Gravitational wave signal from a binary neutron star merger

GW170817 from the binary neutron star merger → **constraint** neutron star **radius** and, thus, the **nuclear EoS**

Neutron Skins and Neutron Stars in the Multimessenger Era F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz Phys. Rev. Lett. 120, 172702 (2018)

Tidal deformability (Λ) is

a quadrupole deformation inferred from **GW signal** → proportional to **restoring force.** Hence, sensitive to the **nuclear EoS**

From Heaven & Earth: neutron skin and the Radius of a Neutron Star

Both, the **neutron skin thickness** ($\Delta r_{np} = r_n - r_p$) in neutron rich nuclei and the **radius** of a **neutron star** are related to the **neutron pressure** in infinite matter. The former around ρ_0 (L) while the latter at larger densities.

 \rightarrow For **small neutron stars**, that is, for small central densities: nuclear models predict a **linear** relation between **R** and Δr_{np}

Low-Mass Neutron Stars and the Equation of State of Dense Matter - J. Carriere, C. J. Horowitz, and J. Piekarewicz - The Astrophysical Journal, 593 (2003) 463

From Earth: Parity violating electron scattering and the neutron skin

Polarized electron-Nucleus scattering:

→ In good approximation, the weak interaction probes the neutron distribution in nuclei while Coulomb interaction probes the proton distribution

→ Different experimental efforts @ Jlab (USA) & MAMI (Germany)

Neutron Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda Phys. Rev. Lett. 106, 252501 (2011)

 \rightarrow **Electrons** interact by **exchanging** a γ (couples to p) or a Z_0 boson (couples to n)

 \rightarrow Ultra-relativistic electrons, depending on their helicity (±), will interact with the nucleus seeing a slightly different potential: Coulomb ± Weak

$$A_{pv} = \frac{d\sigma_+/d\Omega - d\sigma_-/d\Omega}{d\sigma_+/d\Omega + d\sigma_-/d\Omega} \sim \frac{\text{Weak}}{\text{Coulomb}}$$

 \rightarrow Main **unknown** is ρ_n

 \rightarrow In **PWBA** for small momentum transfer **q**:

$$A_{pv} = \frac{G_F q^2}{4\sqrt{2}\pi\alpha} \left(1 - \frac{q^2 r_p^2}{3F_p(q)}\right) \Delta r_{np}$$

From Earth: dipole polarizability and neutron skin

The dipole **polarizability** measures the **tendency** of the nuclear **charge** distribution to be **distorted**.

From a macroscopic point of view $\alpha \sim$ (electric dipole moment)/(external electric field)

→ Using the **dielectric theorem**: the polarizability can be computed from the expectation value of the Hamiltonian in the constrained ground state $H'=H+\lambda D$

→ For guidance assuming the **Droplet model** for H, one would find:

$$\alpha_D \approx \frac{\pi e^2}{54} \frac{\langle r^2 \rangle}{J} A \left(1 + \frac{5}{2} \frac{\Delta r_{np} - \Delta r_{np}^{\text{surf}} - \Delta r_{np}^{\text{Coul}}}{\langle r^2 \rangle^{1/2} (I - I_{\text{Coul}})} \right)$$

Electric dipole polarizability in 208Pb: Insights from the droplet model - X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz Phys. Rev. C 88, 024316 (2013)

From Heaven: Origin of elements

The Origin of the Solar System Elements

1 H		big	bang	fusion	6		COS	mic ray	y fissio	n							2 He
u	4 Be	mer	merging neutron stars 🏢					exploding massive stars 💆					o o	× N	8 0	9 F	10 Ne
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 👩					13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 00	28 Ni	29 J	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Oş	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59 Pr	60 Nd	61 Pm	62	63 Eu	64	65 Th	66 Dv	67 Ho	68 Er	69 Ter	70 Yh	71
			89 Ac	90 Th	91 Pa	92 U			du								
hic created by Jennifer Johnson							Astronomical Image Credits ESA/NASA/AASNova										

Binary neutron star merger produced about 10²⁹kg of heavy elements!

The **crust** of a **NS** is made of very **exotic neutron rich nuclei,** stable only due to the extreme conditions (large densities). **Different nuclear models predict different compositions**

Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93, 014311 (2016)

11

From Heaven & Earth: low energy dipole response and nucleosynthesis

The **largest** the **neutron pressure** among neutrons (~L), the more the **excess neutrons** (~skin) are *"pushed out"* in the **outermost** part of the **nucleus** → spatial *decorrelation* of some of those neutrons with the nucleons in the core produces **larger low lying** responses.

> **GDR**=Giant Dipole Resonance **PDR**= Pygmy Dipole Resonance

Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis S. Goriely, Phys.Lett.B 436 (1998) 10-18

Low energy dipole strength in neutron-rich nuclei influences the neutron capture cross section and, thus, the r-process nucleosynthesis

How are we dealing with the nuclear many-body problem? (brief discussion)

Nuclear Many-Body Problem

Underlying interaction: the "so called" **residual strong interaction** = **nuclear force** has **not** been **derived yet** (with the precision needed) from first principles as **QCD** is **non-perturbative** at the **low-energies** relevant for the description of nuclei.

Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

→ Assuming a system of **interacting fermions** in a confining **external potential**, there exist a **universal** functional $F[\rho]$ of the fermion density ρ :

$$E[\rho] = \langle \Psi | T + V + V_{\text{ext}} | \Psi \rangle = F[\rho] + \int V_{\text{ext}}(r)\rho(r)d\vec{r}$$

 \rightarrow and it can be shown that

$$\min_{\Psi} \langle \Psi | T + V + V_{\text{ext}} | \Psi \rangle = \min_{\rho} E[\rho]$$

so **E[ρ]** has a **minimum** for the **exact groundstate density** where it assumes the **exact energy** as a value.

15

Kohn-Sham realization $F[\rho] \rightarrow T_{non-int.} [\rho] + V_{KS}[\rho]$

For any interacting system, there exists a <u>local</u> single-particle potential V_{ks}(r), such that the exact ground-state density of the interacting system equals the ground-state density of the auxiliary non-interacting system:

$$\rho_{\text{exact}}(\vec{r}) = \rho_{\text{KS}}(\vec{r}) = \sum_{i=1}^{A} |\phi(\vec{r})|^2$$
where φ are single-particle orbitals and the total wave-function correspond to a Slater determinant. The **E[ρ]** is **unique**

$$E[\rho] = T[\rho] + \int V_{\text{KS}}(\vec{r})\rho(\vec{r})d\vec{r}$$
Self-bound interacting Fermions
$$E[\rho] = T[\rho] + \int V_{\text{KS}}(\vec{r})\rho(\vec{r})d\vec{r}$$
where **T[ρ]** is the **kinetic energy of the non-interacting system** and for which the variational equation
$$0 = \frac{\delta E[\rho]}{\delta \rho} = \frac{\delta T[\rho]}{\delta \rho} + V_{\text{KS}}$$
DFT Euler equation:
$$\frac{\delta T[\rho]}{\delta \rho(\mathbf{r})} + v_{\text{KS}}([\rho], \mathbf{r}) = \mu[\rho]$$
yields to the **exact ground state density and energy**

16

Advantadges and disadvantages of DFT

UNEDF http://unedf.mps.ohio-state.edu/

→ ADVANTAGES OF DFT:

exact theory that can be applied to the whole nuclear chart

 many-body problem mapped onto a onebody problem without the need of explicitly involving inter-nucleon interactions!!! (computational cost and interpretation of observables in terms of single-particle properties)

• **HK generalised in (almost all) possible ways**: time dependence, degenerate groundstate, magnetic systems, finite T, relativistic case ...

• any one body observable is within the **DFT framework** (this includes also some sum rules related to nuclear excitations)

→ **DISADVANTAGES OF DFT:**

- various proofs of HK theorems do not give any clue on how to build the functional.
- **no** direct **connection** with **realistic NN or NNN interaction** if current approaches to EDF are not improved (some attempts already exist)
- no systematic way of improvement (evaluate syst. Errors) so far.

Avenues to improve EDFs? (@Milano)

→ We are working in two main directions:

1) **Inverse Kohn-Sham problem**: determine the V_{KS} and then $E[\rho,...]$ from experimental and/or ab initio density distributions. With different **Bachelor and Master Thesis** students

First step in the nuclear inverse Kohn-Sham problem: From densities to potentials

G. Accorto, P. Brandolini, F. Marino, A. Porro, A. Scalesi, G. Colò, X. Roca-Maza, and E. Vigezzi Phys. Rev. C **101**, 024315 – Published 28 February 2020

2) **Mimic** strategy (**Jacob's Ladder**) in **many-electron systems** to systematically improve nuclear EDFs without using *phenomenological* parameters (as long as possible). With one **PhD** (Francesco Marino) and hopefully one postdoc in the future.

Nuclear energy density functionals grounded in *ab initio* calculations

F. Marino, C. Barbieri, A. Carbone, G. Colò, A. Lovato, F. Pederiva, X. Roca-Maza, and E. Vigezzi Phys. Rev. C **104**, 024315 – Published 9 August 2021

Testing and understanding many-body theories

→ Harmonic potential theorem: should be fulfilled by any meaningful many-body theory. With **Bachelor** student and **PostDoc**.

Harmonic Potential Theorem: Extension to Spin-, Velocity-, and Density-Dependent Interactions

S. Zanoli, K. Roca-Maza, G. Colò, and Shihang Shen (申时行) Phys. Rev. Lett. **123**, 112501 – Published 13 September 2019

→ Exactly solvable models: help in better understanding the involved approximations. With Master student and PostDoc.

LETTER Extended Lipkin—Meshkov—Glick Hamiltonian R Romano¹ X Roca-Maza^{3,1,2} (D), G Colò^{1,2} (D) and Shihang Shen(申时行)^{1,2} (D) Published 8 April 2021 • © 2021 IOP Publishing Ltd Journal of Physics G: Nuclear and Particle Physics, Volume 48, Number 5 Citation R Romano *et al* 2021 *J. Phys. G: Nucl. Part. Phys.* 48 05LT01

Main collaborators:

→ Students:

Francesco **Marino** (PhD), Naito **Tomoya** (PhD Tokyo), Giacomo **Accorto** (Master → PhD Zagreb), Andrea **Porro** (Bachelor → Master and PhD in Paris), Riccardo **Romano** (Master) Alberto **Scalesi** (Matster → PhD Paris), Giovanni **Selva** (Master) ...

- → Gianluca Colò & Enrico Vigezzi (University of Milan)
- → Hiroyuki Sagawa (University of Aizu & RIKEN)
- → Shihang **Shen** (Forschungszentrum Jülich)
- → Xavier Vinyes & Mario Centelles (University of Barcelona)
- → Jorge **Piekarewicz** (Florida State University)
- → Nils **Paar** (University of Zagreb)
- → P.-G. **Reinhard** (University of Erlangen-Nürnberg)
- → Misha Gorchtein & Oleksandr Koshchii (Johannes Gutenberg-Universität)
- → Chuck **Horowitz** (Indiana University)
- → Haozhao Liang (University of Tokyo)
- → Witold **Nazarewicz** (FRIB and Michigan State University)