

Γιωτα Φωκα (GSI/CERN)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 10 Μαιου 2022

Outline

Particle Therapy

- Introductory concepts in Particle Therapy
- Current Status and Future Plans

Next generation facility SEIIST

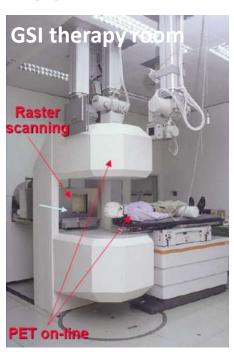
- **SEIIST:** South East European Institute for Sustainable Technologies
- HITRIplus EU-funded project

Capacity Building and Information Activities

- Particle Therapy MasterClasses (PTMC); addressing high-school students
- Heavy Ion MasterClass (HITMC) school; addressing early stage researchers
- **Information events;** for scientific/medical communities
- SEEIIST meets Industry; academia-research-industry workshop

Benefits for society from fundamental research

- Applications
- Opportunities for young people

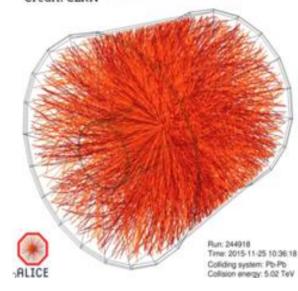

Βαρέα Ιόντα για Έρευνα και Θεραπεία Καρκίνου

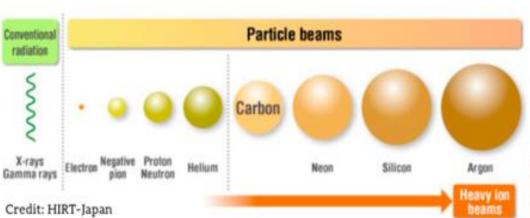
Heavy-ion Physicist, involved with medical applications of heavy-ions for cancer therapy

ALICE heavy-ion experiment at CERN GSI, pioneering heavy-ion cancer therapy in the 90s

Mission and mandate of research institutes: fundamental research Developed technologies and acquired knowledge find applications for society

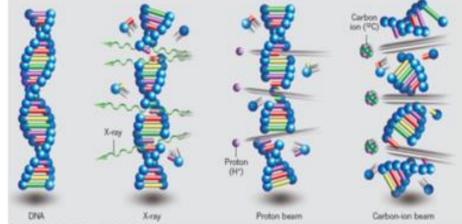
Next Steps: Next Ion Medical Machine Study, NIMMS, CERN group


Βαρέα Ιόντα για Έρευνα και Θεραπεία Καρκίνου

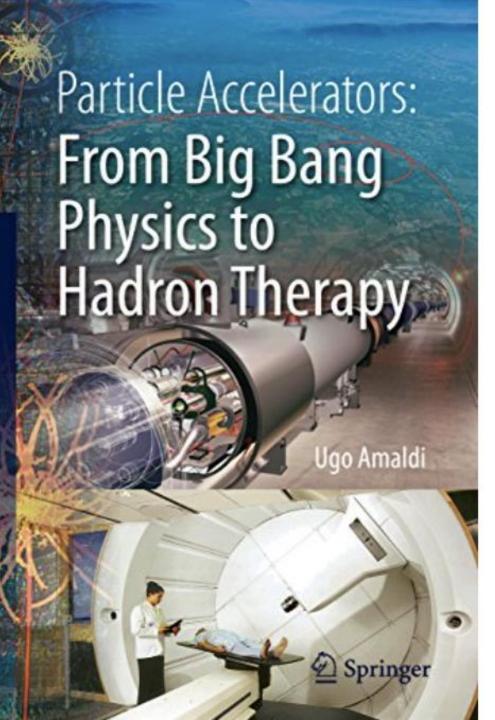

Pb-Pb at 5.5 TeV pp at 14 TeV

fundamental science QGP studies

Credit: CERN



88-430 MeV/u carbon 50-221 MeV/u protons


applied science medicine

Credit: HIT Heidelberg

Credit: T. Nomiya, NIRS Japan

Πως σχετίζεται η Φυσική με την Ιατρική;

Τι είναι η θεραπεία καρκινικών όγκων με ιόντα; γνωστή και ως "αδρονικη" θεραπεία καρκίνου με πρωτόνια η ιόντα άνθρακα

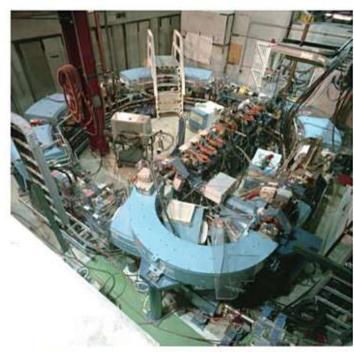
Πώς μπορουν να χρησιμοποιηθουν σωματίδια για θεραπεία καρκίνου;

Πρώτη θεραπεία καρκινικού όγκου σε κέντρο ερευνών φυσικής

1954 – Berkeley treats the first patient

1932 - E. Lawrence First cyclotron

Berkeley cyclotron
Nobel Prize 1939


Το 1946, ο Robert Wilson πρότεινε την χρήση πρωτονίων για θεραπεία καρκίνου.

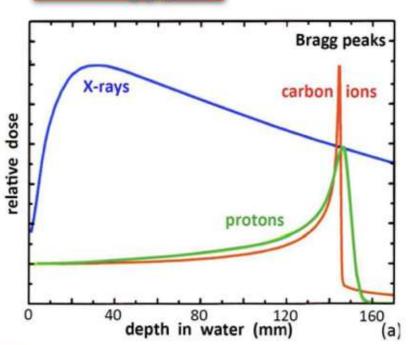
Το **1954**, η πρώτη θεραπεία καρκινικού όγκου στο Berkeley.

AGE DEPTH DOS

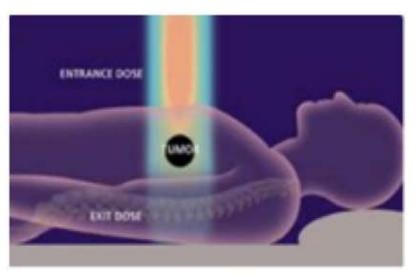
Από την Φυσική στην Ιατρική Από τα κέντρα ερευνών φυσικής στις κλινικές

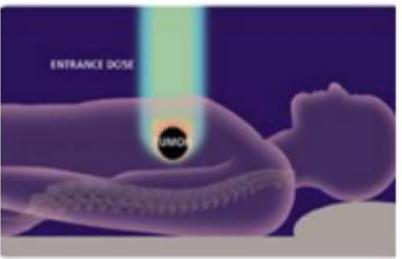
1993- Loma Linda USA (proton) 1994 – HIMAC Japan (carbon) 1997 – GSI Germany (carbon)

First dedicated clinical facility



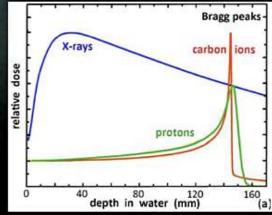
Αδρονικη θεραπεία καρκινικών όγκων


Bragg Peak: φορτισμένα σωματίδια αποθέτουν ενέργεια σε συγκεκριμένο βάθος, ανάλογα με την ενέργεια της δέσμης


The Bragg peak

Different from X-rays or electrons, protons (and ions) deposit their energy at a given depth inside the tissues, minimising dose to the organs close to the tumour, sparing nearby organs.

Required energy for full-body penetration: 230 MeV protons, 450 MeV/u C-ions.

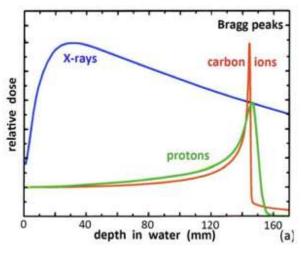


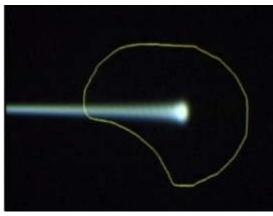
Χρήση επιταχυντών στην Αδρονικη θεραπεία

A «beam» of accelerated particles is like a small "knife" penetrating into the matter

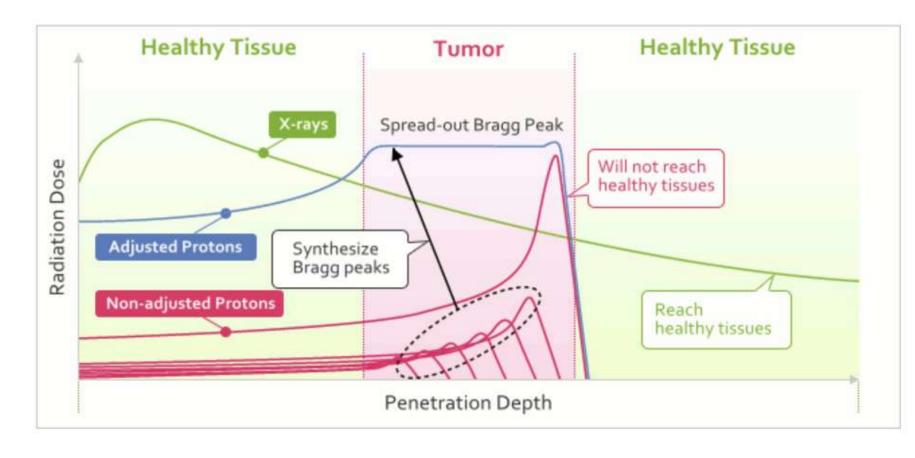
the nucleus. Particles can penetrate in depth (different from lasers!). depth in water (mm) Particle beams are used in medical and industrial applications,

A particle beam can deliver energy to a very precisely defined area, interacting with the electrons and with

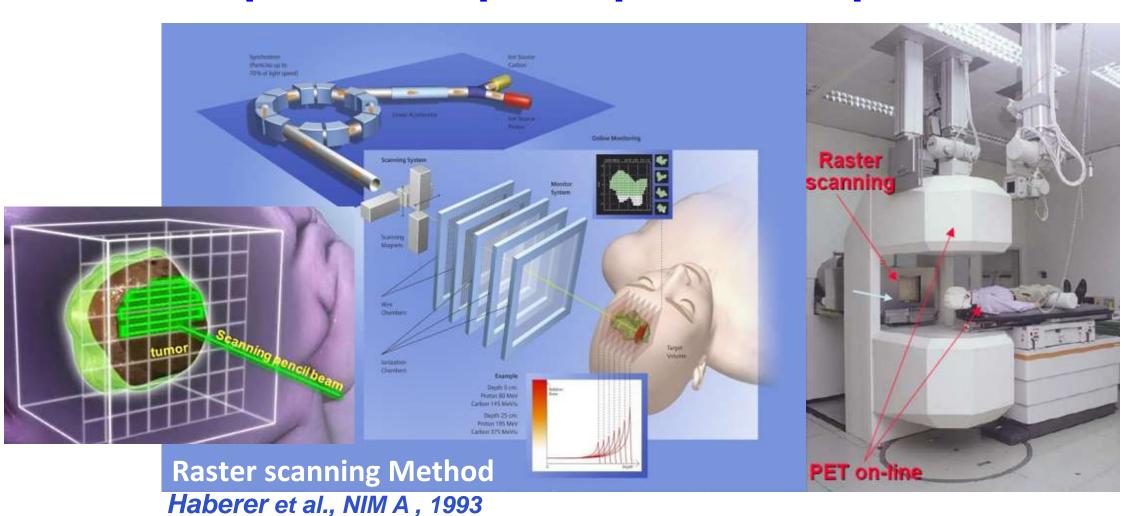



e.g. to cure cancer, delivering their energy at a well-defined depth inside the body (Bragg peak)

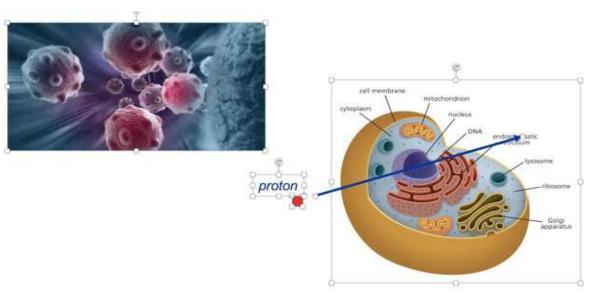
Accelerators: can precisely deliver energy

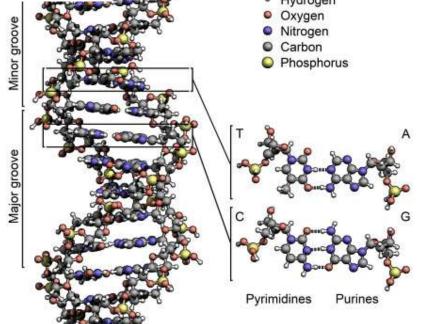

Αδρονικη θεραπεία καρκινικών όγκων

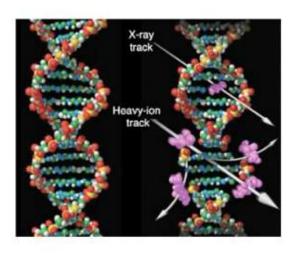
Bragg peak



Spread out Bragg peak

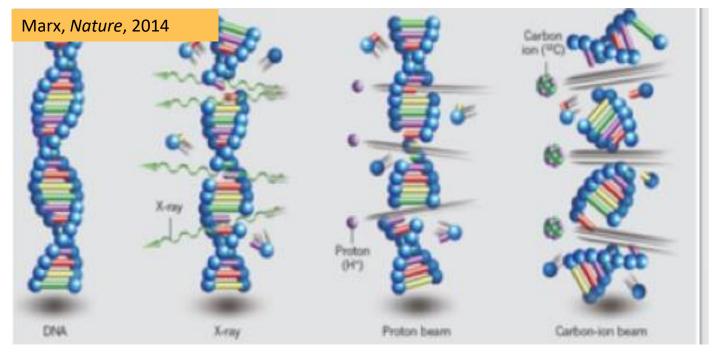

Βαρέα Ιόντα για Θεραπεία Καρκίνου στο GSI


scanning of focussed ion beams in fast dipole magnets active variation of the energy, focus and intensity in the accelerator and beam lines


Εφαρμόσθηκε στα κέντρα θεραπείας του ΗΙΤ και ΜΙΤ της Γερμανίας

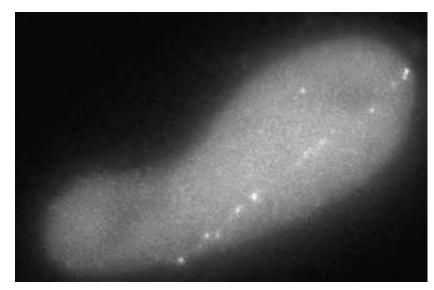
Δέσμες σωματιδίων για καταστροφή κυττάρων

Κατανοώντας τις ιδιότητες των σωματιδίων και μαθαίνοντας πώς να τα επιταχύνουμε και να τα κατευθύνουμε σε συγκεκριμενο στόχο, γεννήθηκε η ιδέα να τα χρησιμοποιήσουμε για να καταστρέψουμε καρκινικα κυτταρα



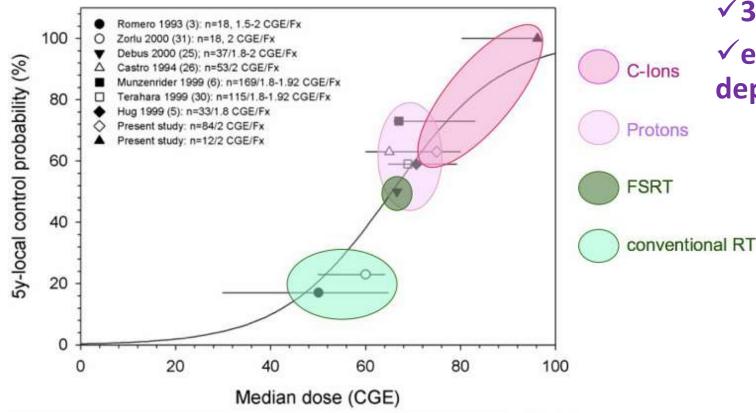
Δέσμες σωματιδίων για καταστροφή κυττάρων

proton


Οπλοστάσιο για θεραπεία καρκινικών όγκων

DNA φωτονία πρωτονία ιοντα ανθρακα

Στοχεύοντας τον Στόχο και μόνο το Στόχο!


Στόχος: καταστροφή καρκινικών κυττάρων ΜΟΝΟ!! Πρωτεΐνες για επιδιόρθωση σε μικροσκόπιο

Αποτελεσματικότητα ιόντων άνθρακα

Radiotherapy of Skull Base Chordomas Motivation: Dose Response Relationship

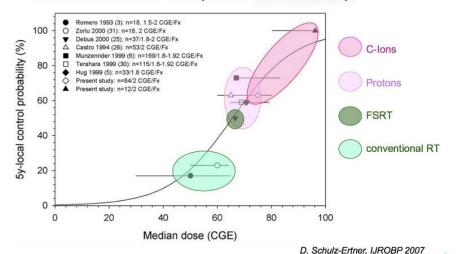
Carbon ions

Double-strand breaks (not reparable)

- √3x more damage (RBE)
- ✓ effective in hypoxic (oxygendepleted) "radioresistant" tumours

Δωμάτιο θεραπείας στο GSI (Cave M)

D. Schulz-Ertner, IJROBP 2007

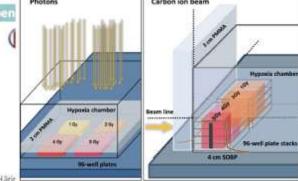


Ραδιο-ανθεκτικοι ογκοι

Αποτελεσματικότητα ιόντων άνθρακα με ραδιο-ανθεκτικους ογκους

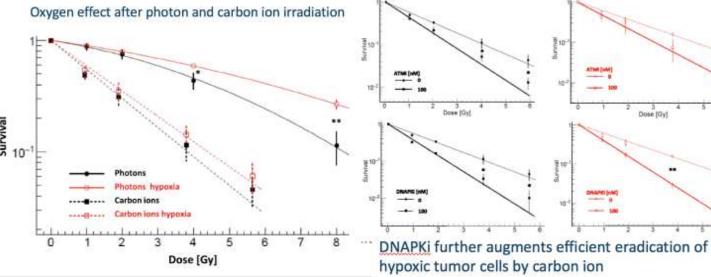
Carbon ions

Radiotherapy of Skull Base Chordomas Motivation: Dose Response Relationship



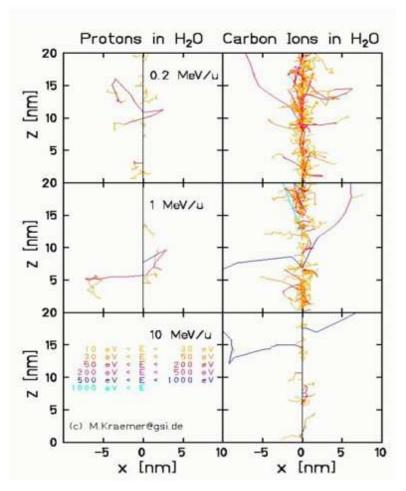
Klein et al. Radiation Oncology (2017) 12:208 DOI 10.1186/s13014-017-0939-0

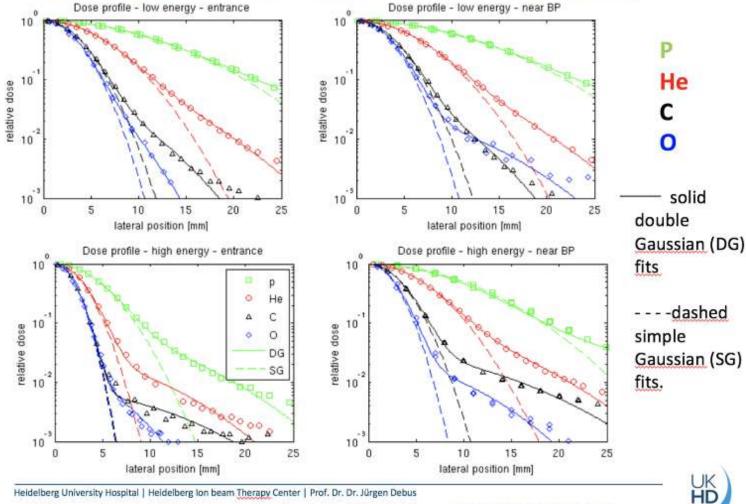
Radiation Oncology


RESEARCH

Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation

Hypoxia (1 % O₃)


Carmen Klein 1234, Ivana Dokic 1234, Andrea Mairani 12345, Stewart Mein 1234, Stephan Brons⁴, Peter Härir Thomas Haberer⁴, Oliver Jäkel³, Astrid Zimmermann⁷, Frank Zenke⁷, Andree Blaukat⁷, Jürgen Debus^{12,3,4} and Amir Abdollahi 1,2,3,4,8* Normoxia (21 % O₂)

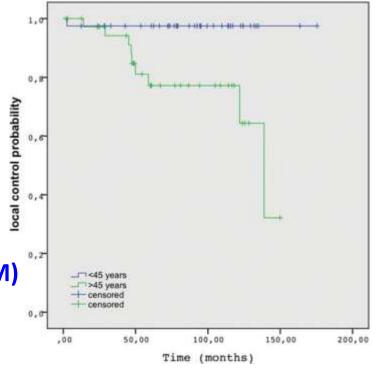


Έρευνα με διάφορα είδη ιόντων

Από έρευνα με προσομοιώσεις μέχρι και την εφαρμογή θεραπείας με He Rationale for 4He-beam therapy: scattering

στο κεντρο ΗΙΤ της Χαϊδελβέργης

T. Tessonnier, A. Mairani, et al. Physics in Medicine Biology, 2016, 62(10):3958-3982

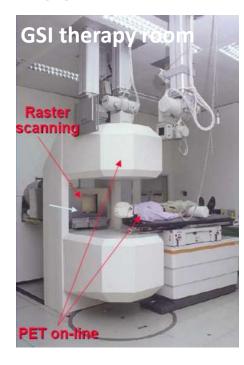

Αποτελέσματα θεραπείας στο GSI

- Chondrosarcoma discovered and surgically removed in 2003
- Recurring tumor in 2007 at age 8
- Treated in GSI Cave M with carbon ions
- Local control of tumor for 10 years and counting
- Under regular supervision in Heidelberg
- 2017 preparing to enroll in informatics
- No longterm side effects

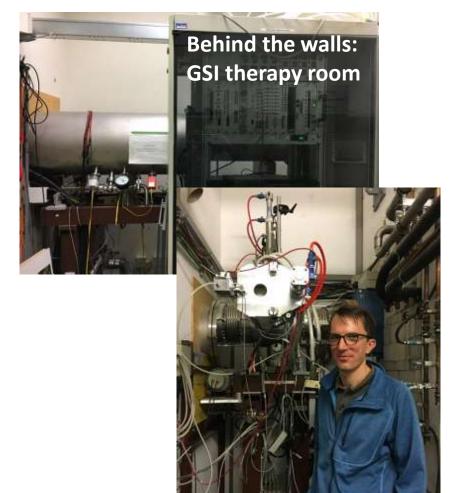
http://www.deutsche-uniklinika.de/themen-diebewegen/hinter-den-kulissen-patientenerzaehlen/chondrosarkom/

Ποσοστό επιτυχίας

Δωμάτιο θεραπείας στο GSI (Cave M)


Συνεχεια Έρευνας για Θεραπεία Καρκίνου στο GSI

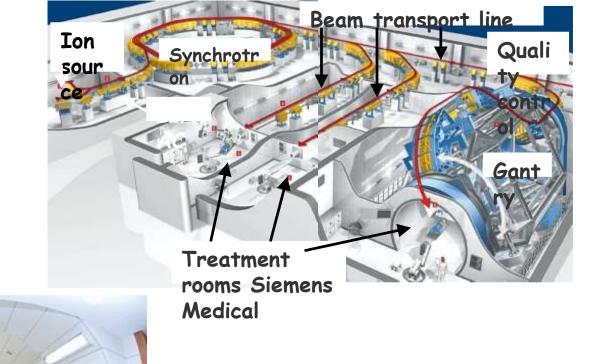
GSI δωμάτιο θεραπείας σήμερα


GSI, pioneering heavy-ion cancer therapy in the 90s

Έρευνα για την θεραπεία κινούμενων οργάνων, πνευμόνων κλπ

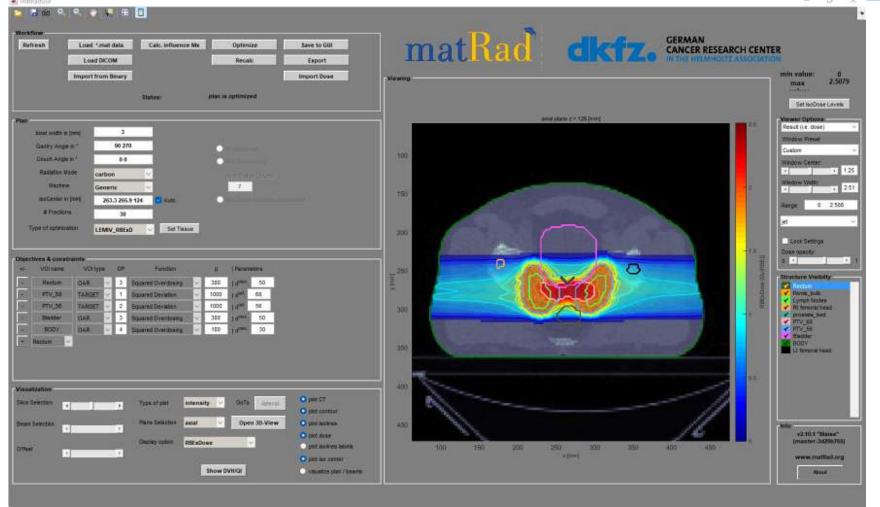
Τι υπάρχει πίσω από τους τοίχους?

GSI δωμάτιο θεραπείας: πίσω από τους τοίχους


Βαρέα Ιόντα για Θεραπεία Καρκίνου στο ΗΙΤ πανεπιστημιακό νοσοκομείο της Χαιδελβεργης

Το πρώτο κέντρου θεραπείας ιόντων στην Ευρώπη: Το HIT στην Heidelberg

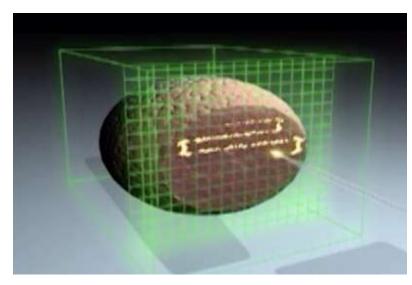
Ξεκίνησε την θεραπεία ασθενών το 2009.

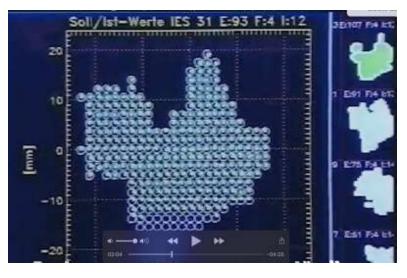

Ακολούθησε το MIT στο Marburg

Σχεδιασμός Θεραπείας

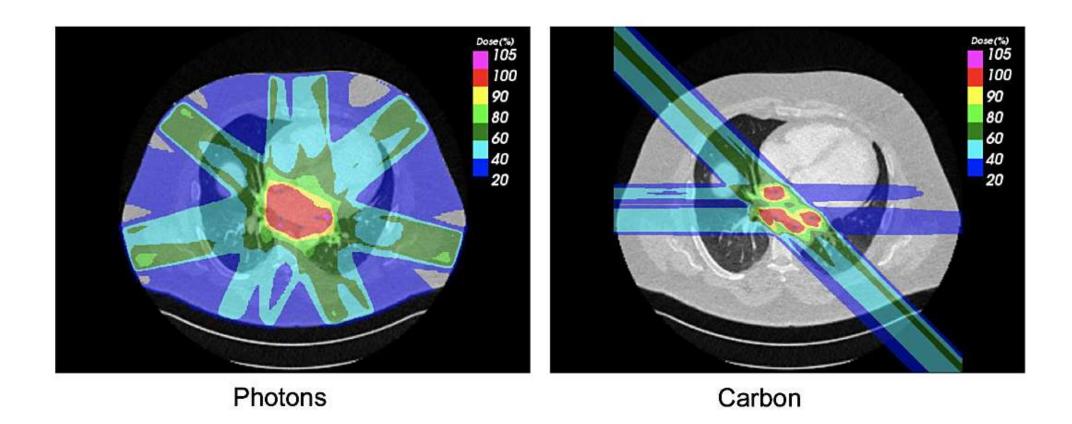
matRad Treatment Planning: επαγγελματικό open source λογισμικό, για τον υπολογισμό κατανομής της δόσης (σχεδιασμού πλάνων θεραπείας)

Αναπτύχθηκε στην Χαϊδελβέργη από το DKFZ, Γερμανικό κέντρο έρευνας για τον καρκίνο για έρευνα και επιμόρφωση χρησιμοποιοντας φωτόνια, πρωτόνια και ιόντα matRad: www.matrad.org

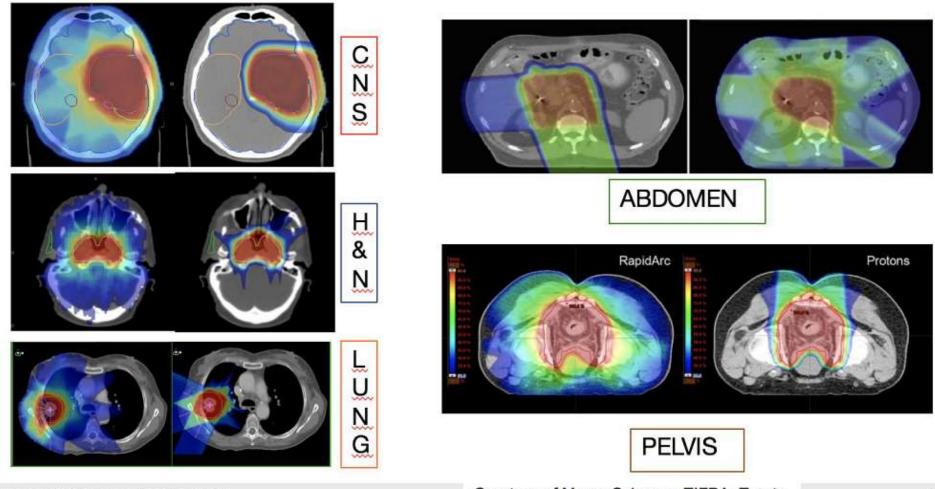

Απαιτήσεις και παράμετροι των ιατρικών επιταχυντών


Accelerator Requirements for Scanning

Example: beam parameters Heidelberg Ion Therapy (HIT)


Parameter	
ions	protons and carbon (3 ion sources); pre-clinical: helium, research: oxygen (from carbon source)
intensity	2 x 10 ⁶ /s to 8 x 10 ⁷ /s for carbon 8 x 10 ⁷ /s to 4 x 10 ⁸ /s for protons 10 steps; maximum extraction time 5 s Increase needed ~ 5x (FLASH not understood today)
energy	88-430 MeV/u for carbon 50-221 MeV/u for protons 255 steps, 1-1.5 mm spacing, 2-30 cm range in water
focus	3.5-13 mm FWHM 11-33 mm FWHM 4 steps

 \rightarrow a total of 3 x 10 x 255 x 40 = 30600 settings per treatment room!



Σύγκριση φωτονίων με ιόντα άνθρακα

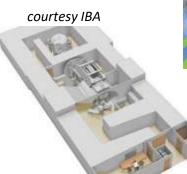
Σύγκριση φωτονίων με ιόντα άνθρακα

Particle therapy: dose advantage in more patients

Διαφορετικοί επιταχυντές για διαφορετικά σωματίδια

Ions deliver more energy to the tissues but need more energy to enter the body → higher energy accelerator, factor 2.8 in diameter with respect to protons

Conventional x-ray Radiotherapy



Linac, X-rays $\sim 50 \text{ m}^2$ ~5 M€

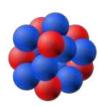
Cyclotron, protons

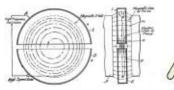
~500 m² ~40 M€

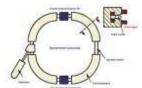

ΗΙΤ, Γερμανία

Synchrotron, heavy ions

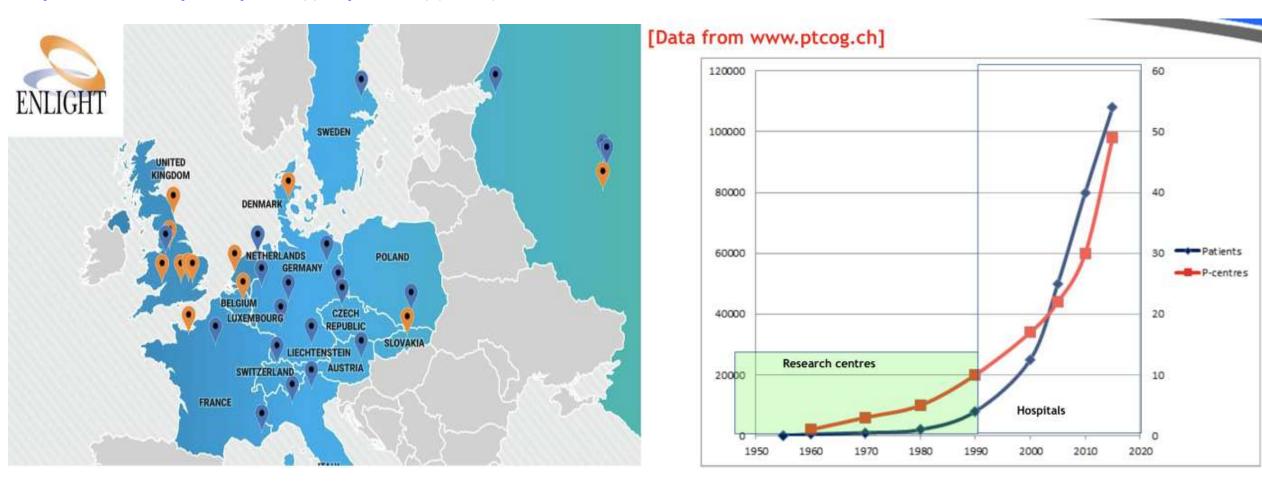
~5,000 m²


~200 M€





Carbon ion mass: 12 mo A synchrotron is a "hollow cyclotron": Because higher energies need larger particle orbits, in the synchrotron a time-varying magnetic field covers only the external part.


Photon (X-ray) no mass

Proton mass: 1 mo

Wikimedia commons

Κέντρα Αδρονικης Θεραπείας

Ευρωπαϊκά κέντρα αδρονικης θεραπείας (2018)

Hadron therapy is an advanced niche in cancer therapy: 22,000 patients/year (2018) treated with particle beams against 25,000,000 patients/year with conventional RT.

Τέσσερα κέντρα σωματιδιακής θεραπείας βαρέων ιόντων για θεραπεία καρκίνου στην Ευρώπη

MedAustron, Αυστρία

ΗΙΤ, Γερμανία

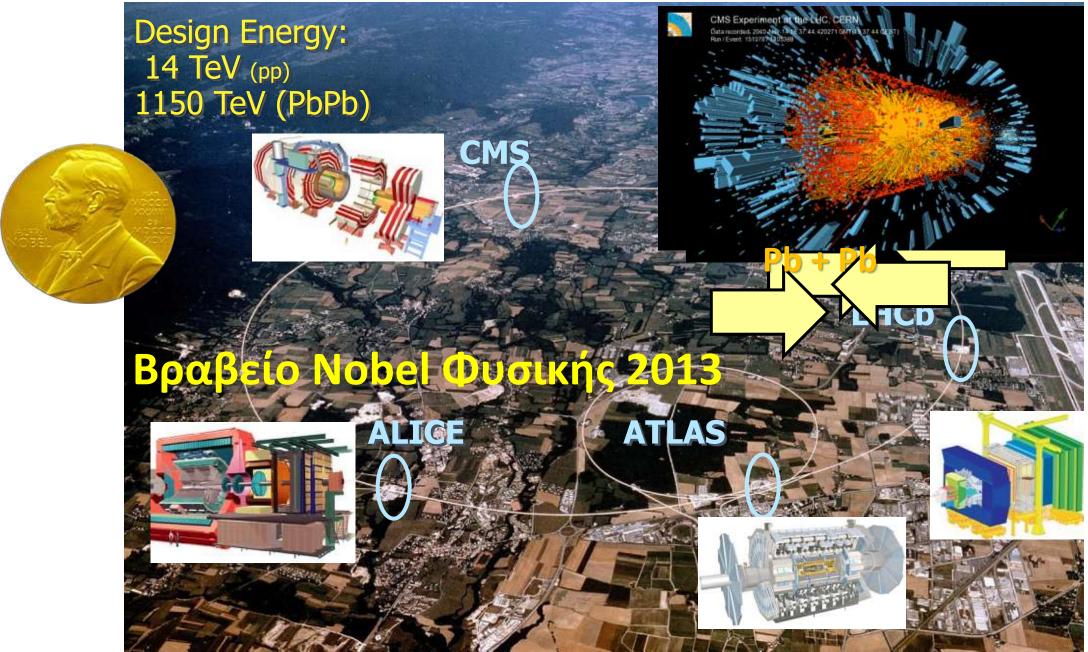


ΜΙΤ, Γερμανία

Παγκόσμια κέντρα βαρέων ιόντων για θεραπεία καρκίνου

1 carbon center in the US in planning stage

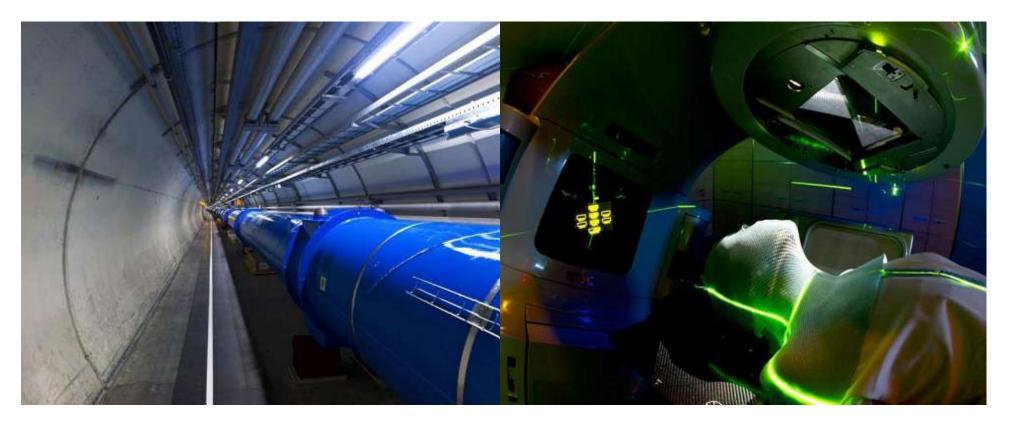
Εικονικό κέντρο σωματιδιακής θεραπείας The accelerator system (ion source, injector, **ENLIGHT** particle accelerator, beam lines, gantry) represents more than 75% of the construction and operation costs of the facility. on Ganti antream Section onsulting Area Preparation Room eception Children's Area Particle Accelerator https://indico.cern.ch/event/840212/page/18000-animation


Εικονικό κέντρο σωματιδιακής θεραπείας

https://indico.cern.ch/event/840212/page/18000-animations

Large of Large Hadrons'

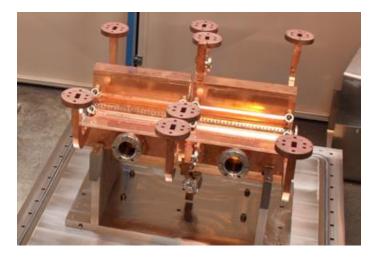
Ποια είναι τα οφέλη;


Η τεχνολογία επιταχυντών χρησιμοποιείται για έρευνα και για θεραπεία καρκίνου

Καινοτόμες τεχνολογίες που αναπτύσσονται για τα μελλοντικά σχέδια του CERN ήδη βρίσκουν εφαρμογές

Επιταχυντές για την υγεία

Από την βασικη έρευνα...


.....στις ιατρικές εφαρμογές

Οφέλη από R&D επιταχυντών για την Κοινωνία

FLASH radiotherapy: very fast delivery (high dose-rate <0.5s) of very large dose

The Hospital of Lausanne, CHUV, has secured funding for the construction of a prototype FLASH radiotherapy facility based on technology developed for the future proposed CLIC project of CERN.

CLIC RF X-band cavity prototype (12 GHz, 100 MV/m)

Particle accelerator technology made huge progress in the last 20 years, towards more compact and performant accelerator designs.

We can today explore new accelerator designs profiting of the latest advances in accelerator technologies.

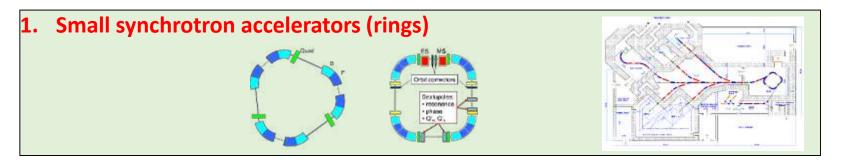
Next Ion Medical Machine Study, NIMMS, at CERN

Establishment of NIMMS, the

Next Ion Medical Machine Study at CERN (2018):

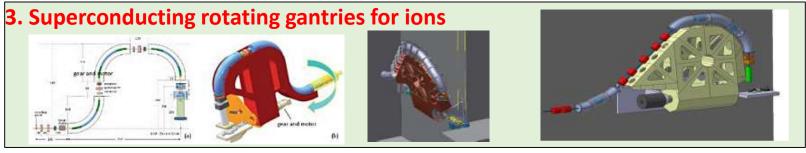
- Building on the experience of the PIMMS (proton-ion medical machine study) of 1996/2000;
- Federating a large number of partners to develop designs and technologies for next-generation ion therapy;
- Partners can use the NIMMS technologies to assemble their own optimized facility.

Basic requirements of the next generation cancer therapy accelerator:


- ☐ Operation with multiple ions: protons, helium, carbon, oxygen, etc. for therapy and research.
- ☐ Lower cost and dimensions, compared to present;
- ☐ Faster dose delivery with higher beam intensity and new delivery schemes (FLASH)
- ☐ A gantry device to precisely deliver the dose to the tumour.

International partners collaborating with NIMMS:

- □ SEEIIST (South East European International Institute for Sustainable Technologies)
- TERA Foundation (Italy)
- ☐ GSI (Germany)
- ☐ INFN (Italy)
- CIEMAT (Spain)
- Cockcroft Institute (UK)
- University of Manchester (UK)
- ☐ CNAO (Italy)
- ☐ Imperial College (UK)
- MedAustron (Austria)
- U. Melbourne (Australia)
- ☐ ESS-Bilbao (Spain)
- ☐ Riga Technical University (Latvia)
- Sarajevo University (Bosnia &H.)


Main research lines for future ion therapy

Reduced dimensions with improved performance (injection, extraction)

High magnetic fields to bend particles on small orbits

Precise beam delivery on multiple angles

Μελλοντικά Σχέδια

SEEIIST

South East Europe International Institute for Sustainable Technologies

Επόμενη γενιά εγκαταστάσεων για έρευνα και θεραπεία καρκινικών όγκων με δέσμες ιόντων

SOUTH-EAST EUROPE
INTERNATIONAL INSTITUTE FOR
SUSTAINABLE TECHNOLOGIES
(SEEIIST)

- > **SEEIIST** (South East Europe International Institute for Sustainable Technologies): a new international partnership aiming at the construction of a new Research Infrastructure for cancer research and therapy in South East Europe (10 member countries).
- > SEEIIST is supported by the European Commission, to develop the facility design in collaboration with CERN and other partners.
- Goals are to develop a new advanced design and to build international cooperation and scientific capacity in a region that will join EU but is less developed and still divided, in the line of "science for peace".

Πρόταση για κέντρο έρευνας και θεραπείας καρκινικών όγκων με δέσμες ιόντων στα Βαλκάνια

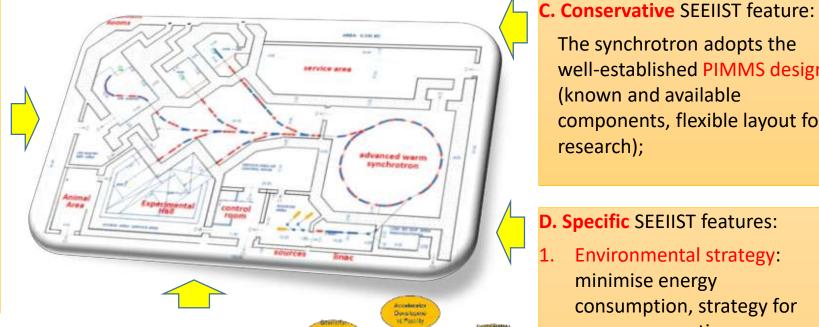
Επόμενη γενιά εγκαταστάσεων για έρευνα και θεραπεία καρκινικών όγκων με δέσμες ιόντων

Basic concepts for a

SOUTH-EAST EUROPE
INTERNATIONAL INSTITUTE FOR
SUSTAINABLE TECHNOLOGIES
(SEEIIST)

first financial support of the <u>European Commission (DG RTD)</u> and the EU funded <u>HITRIPlus</u>

for state-of-the-art particle accelerator design and related technology



Επόμενη γενιά εγκαταστάσεων για έρευνα και θεραπεία καρκινικών όγκων με δέσμες ιόντων

Intensive design work in 2019/20 in collaboration between CERN and SEEIIST, with the contribution of NIMMS partners and of the main European ion therapy centres has led to successful EU funded projects

A. Innovative SEEIIST features:

- Optimised for 50% research and 50% patient treatment (~400 patients/year);
- Providing 20 times higher beam intensity for carbon ions than present facilities;
- Equipped with flexible extraction for operation in FLASH mode;
- Equipped with dual mode linear injector capable of producing radioisotopes for cancer imaging and therapy.

research);

(known and available

The synchrotron adopts the

well-established PIMMS design

components, flexible layout for

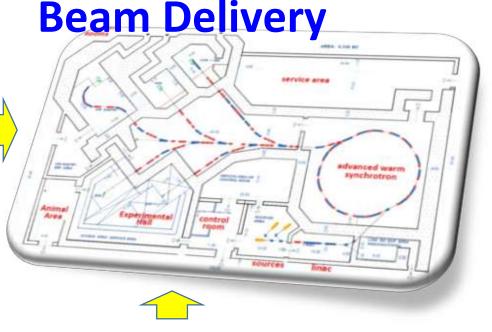
D. Specific SEEIIST features:

Environmental strategy: minimise energy consumption, strategy for energy generation;

(photovotal proceed

Central SEEUST

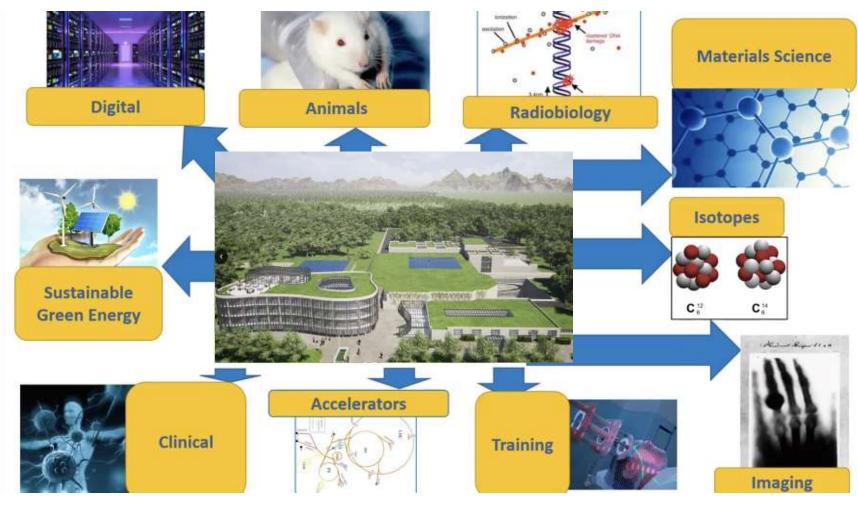
Conceived as a multiple-hub facility, to federate partners in different countries.


- **B. Advanced** SEEIIST features (common to other advanced facilities):
- Operation with multiple ions: protons, Helium, Carbon, Oxygen, Argon;
- Multiple energy extraction for faster treatment;
- Equipped with a compact superconducting gantry of novel design.

Επόμενη γενιά εγκαταστάσεων για έρευνα και θεραπεία καρκινικών όγκων με δέσμες ιόντων

Intensive design work in 2019/20 in collaboration between CERN and SEEIIST, with the contribution of NIMMS partners and of the main European ion therapy centres has led to successful EU funded projects

Gantry at SEEIIST


Gantry at HIT

- **B. Advanced** SEEIIST features (common to other advanced facilities):
- 1. Operation with multiple ions: protons, Helium, Carbon, Oxygen, Argon;
- Multiple energy extraction for faster treatment;
- 3. Equipped with a compact superconducting gantry of novel design.

Επόμενη γενιά εγκαταστάσεων για έρευνα και θεραπεία καρκινικών όγκων με δέσμες ιόντων

Για να μεγιστοποιηθούν τα οφέλη, το SEEIIST σχεδιάζεται ως μια εγκατάσταση με κόμβους σε διάφορες χώρες

Επόμενη γενιά εγκαταστάσεων για ερευνα και θεραπεία καρκινικών όγκων με δέσμες ιόντων

Basic concepts for a

SOUTH-EAST EUROPE INTERNATIONAL INSTITUTE FOR SUSTAINABLE TECHNOLOGIES (SEEIIST)

Overview

Timetable

Program

Groups Practical Information

Interest

Accomodation

Material for Working

City of Thessaloniki

Excursion and Places of

Hotels & Restaurants

COVID-19 Information

Visa Information

Instructions for Indico Registration Form Registrants List

Particle Therapy Online Information Event, 06/04/2022 Articles and Photos

Yiota Foka@cem.ch

SEEIIST Online Information Event, 6/11/2020

Contact

SEEIIST meetings in Thessaloniki

https://m.voutube.com/watch?v=JaNQAWDLWz0&feature=voutu.be

The main scientific goal of SEEIIST is the realisation of a "Facility for Tumour Hadron Therapy and Biomedical Research". Such a Regional Center of Scientific Excellence will strengthen local scientific expertise for future projects and the development of a sustainable economy and social cohesion. The facility is expected to stimulate the development of complementary technologies, such as the use of alternative energy sources or the development of advanced digital systems, and to trigger spin-offs. To maximise benefits it is planned as a regionally distributed facility with hubs in different countries offering numerous opportunities for technology transfer and benefits to South-East European industry as well as international cooperation opportunities.

The SEEIIST project has entered the Design Phase thanks to the first financial support of the European Commission (DG RTD) and the EU funded HITRIplus project, where state-of-the-art particle accelerator design is developed in collaboration with the main European research centres CERN and GSI-FAIR.

The SEEIIST meetings in Thessaloniki will be in hybrid mode, preferably in person and will include the:

- Open Steering Committee Meeting
- · Closed Steering Committee Meeting . Legal Framework Working Group Meeting

· Site Selection Working Group Meeting

https://indico.cern.ch/event/1103276/

https://www.hitriplus.eu/

HITRIplus Project

για επιστημονική ανάπτυξη και κατάρτιση

ευκαιρίες σε σχετικούς τομείς

Heavy Ion Therapy Research Integration

Clinical and Research programmes

Transnational Access opens to scientific community the five European facilities providing ion beams

EU-funded project

HITRIplus Στόχοι

Main aims:

- (a) transnational access,
- (b) new developments for the future SEEIIST facility and upgrades of the existing ones
- (a) networking, training and education (capacity building)

HITRIplus EU-funded project

Large consortium of research infrastructures including CERN and GSI, plus universities, industry, all four existing European heavy-ion therapy centres, and the future research infrastructure SEEIIST (South-East Europe International Institute for Sustainable Technologies)

HITRIplus Aνοιχτή Πρόσβαση: Transnational Access TNA

The *Clinical Access* gives the opportunity to clinicians/medical physicists/technicians referring patients to the hadrontherapy facilities to personally follow patient's treatment and follow up.

The **Research Access** will attract universities, research centres, and hospitals, which will connect all the groups to perform research activities with carbon ion beams. Industrial partners are also encouraged to take part in the research programme, to be involved in the development of new clinical procedures and new medical devices.

	CLINICAL	RESEARCH	TOTACCESS	
CNAO	12	80	92	
GSI	· ·	296	296	
UKHDIT	10	72	82	
MEDA	12	-	12	
MIT	16	-	16	
	50	448	498	

Available and effective
Capacity Building
in SEE Countries
for Clinicians and Researchers

www.hitriplus.eu

Big opportunity for SEEIIST Members!!!

TNA: https://www.hitriplus.eu/transnational-access-what-is-ta/

FORM for CLINICAL TNA Access: https://www.hitriplus.eu/transnational-access-ca/
FORM for RESEARCH TNA Access: https://www.hitriplus.eu/transnational-access-ra/

In addition, 2 more schools are foreseen, 4-8 July 2022 and in 2023.

https://www.hitriplus.eu/event-calendar/

In order to facilitate sustainability and spreading to the max the acquired knowledge they all foresee "Train the Trainer" sessions: train tutors that could perform back at their home institutes the **Particle Therapy MasterClasses** that are one-day events addressing high-school students.

HITRIplus Σχολεία

First event of HITRIplus Project

Heavy Ion Therapy Masterclass School in HITRIplus "Education and Training" addressing university students and up to early stage researchers and practitioners

https://indico.cern.ch/e/HeavylonTherapyMasterClass

Full week course

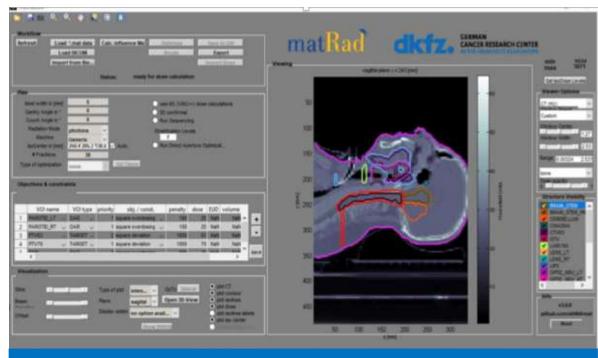
The HITM school is aimed at university students, and up to early stage researchers.

Particle Therapy Masterclass https://indico.cern.ch/event/840212/

One day activity

The Particle Therapy MasterClass, is aimed at high-school students (16-18)

Interesting career paths in emerging fields where often there is lack of specialised personnel


Information about upcoming modern techniques for cancer tumour therapy and new research avenues, where clearly the development of technology and the expertise of research laboratories is crucial.

Treatment Planning

Virtual Therapy Centre

Treatment Planning and all it entails to deliver the beam to the target

multidisciplinary facets of heavy- ion therapy

greatly appreciated: to have the full image what happens from the beginning to the end

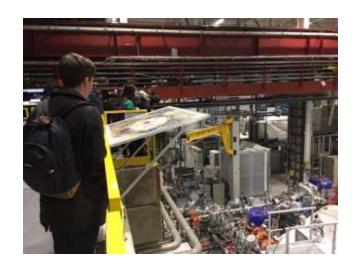
PTMC: Typical MasterClass Day Agenda

Scientists for a day !!

Adapted online/zoom due to covid

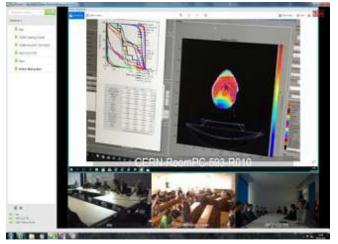
Every year, mid-February to mid-April school-children (15-19 year old) are invited at/by an institute of their area.

> 2-5 institutes per day performing the same programme


LOCAL TIME:

8:30 - 9:00	Registration and Welcome
9:00 - 10:00	Introductory lectures
10:30 - 11:30	Visit of a lab or experiment
12:00 - 13:00	Lunch
13:00 - 15:00	Hands-on session
15:00 - 16:00	Discuss results locally
16:00 - 17:00	Common Video Conference

Local: Morning Presentations Local: Afternoon Hands-on



Local: Morning Visits

Common: Afternoon at 16:00 **Video-Conference**

Χαρακτηριστικά Στοιχεία ΗΙΤΜ Σχολείου

"Original" format: appreciated by participants inspired by Particle Therapy MasterClasses

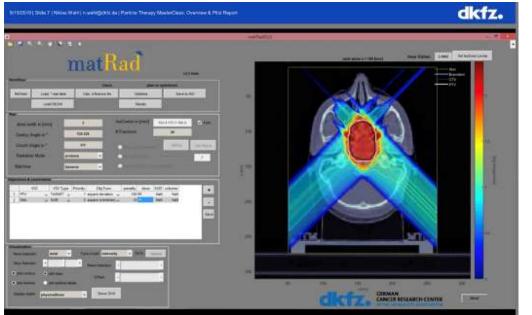
Highlight:

Hands-on sessions, "do it yourself" guided by experts, with real data and professional tools and methods

Pedagogical elements facilitating learning

- Lectures in the morning
- Hands-on in the afternoon
- Students' presentations and discussions of their results with experts
- Virtual visits to existing therapy centres guided by their experts,
 supported by web-cam or videos
- Every day started with videos while participants were connecting to give them a visual impression and help them relate what they would listen
- Every day ended with social events, to provide opportunities for networking and entertainment
- Last day dedicated to "future developments" just before the "Careers Fair" in the evening

Πρακτική Άσκηση Σχεδιασμού Θεραπείας


Heavy Ion Therapy Masterclass School

Home Organizers and Sponsors Objectives and Scientific Programme Poster School Poster Social Events Agenda Registration Fees and Instructions Registration Form Participant List Presentations Instructions MatRad Instructions Zoom Instructions Photos Gallery

Contact	
M hitm.adm@cern.ch	

Connection Instructions

Hands-on: based on professional open source treatment planning toolkit matRad, developed by Heidelberg DKFZ for research and training www.matrad.org


180 participants delivered matRad hands-on results

Out of 238 certificate requests, 158 eligible having delivered hands-on and sufficient attendance

matRad - an open-source toolkit for dose calculation and optimization

Hands-on matRad Treatment Planning

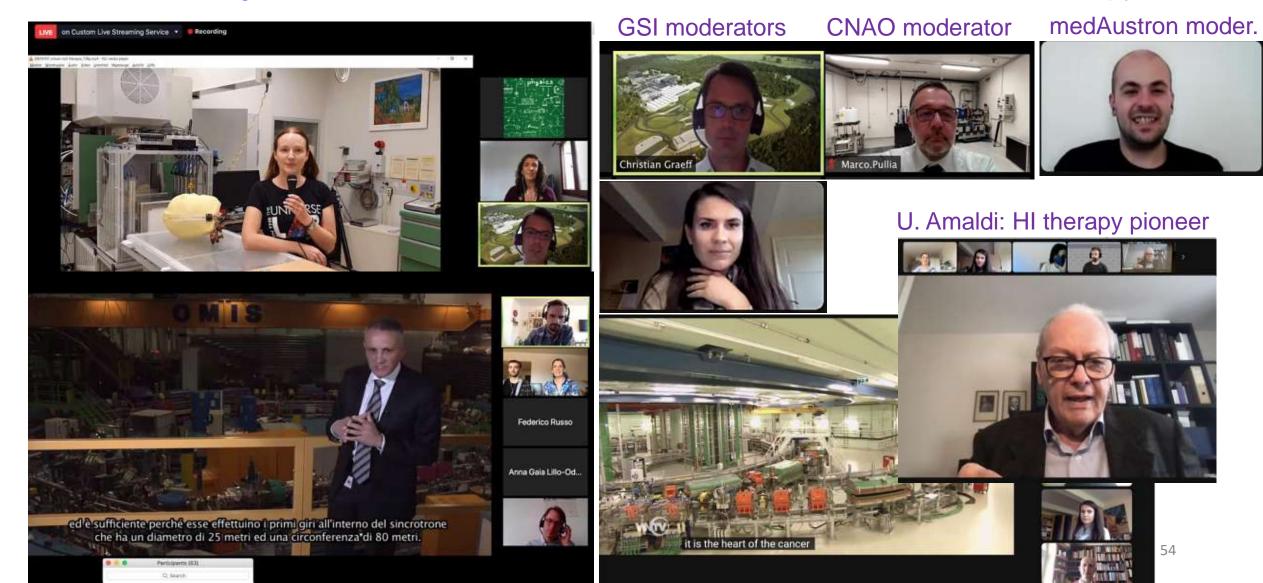
ΡΤΜΟ πιλοτικά τεστ το 2019

CERN, DKFZ, GSI

Θετική ανάδραση από τους μαθητές

ΕΛΠΙΔΑ ΚΑΙ ΚΙΝΗΤΡΟ ΓΙΑ ΣΥΝΕΙΣΦΟΡΑ ΣΤΗΝ ΜΑΧΗ ΚΑΤΆ ΤΟΥ ΚΑΡΚΙΝΟΥ

- Πρώτο τοπικό τεστ: GSI, 7th Φεβρουαρίου 2019
- Πρώτο διεθνές τεστ: CERN, DKFZ, GSI, 5th Απριλίου 2019


Συμμετοχή της ομάδας CURIEosity από την Κρήτη, Ελλάδα

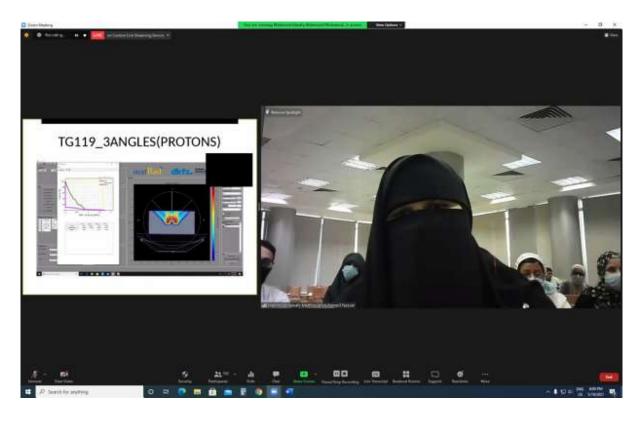
Εντάχθηκε στο πρόγραμμα International MasterClasses IMC: https://physicsmasterclasses.org

Virtual visits and video-conferences

Virtual visits during video-conference: GSI research institute, CNAO, MedAustron therapy centers

HITM school Opening Session

Uni of Benha, Egypt: Integrate the school into the Uni curriculum, presence of rector



HITEL Here to Thenky Roman's tropped

Heavy Ion Therapy Masterclass School

Prostate_5ANGLES(photons)

Diversity and sharing know-how

Heavy Ion Therapy Masterclass 17th May - 21st May 2021 Evening Socials From 18:00

MON

Introductory Drinks

Meeting the other attendees with drinks!

Speaker: Manjit discussing the ENLIGHT network

Dress Code: Smart Casual

TUE

Language Cafe

Learn other languages & cultures!

Speaker: Mimosa - ion treatment for beginners

Dress Code: Traditional

WED

Student Q&A

Ask udvice & cliat to current students Speaker: CERN Knowledge Transfer Dress Code: Pvjarna Partv

Tours, Games & Disco

Share music tastes & play games & quizzes Dress Code: Impress Us.

Career Fair

Discussion with experts on career paths

Speakers: CERN, GSI, CNAO, DKFZ & Cosylab

Dress Code: Formal Attire

HITMC school Social Events Networking

The Platform

SpatialChat : 60 participants on Friday till 21:30

The Hosting team @ Social Events:

Amar Kapić
PhD student

EPFL/CERN

Aristeidis Mamaras

MSc student

AUTh/CERN

Damir Škrijelj

MSc student

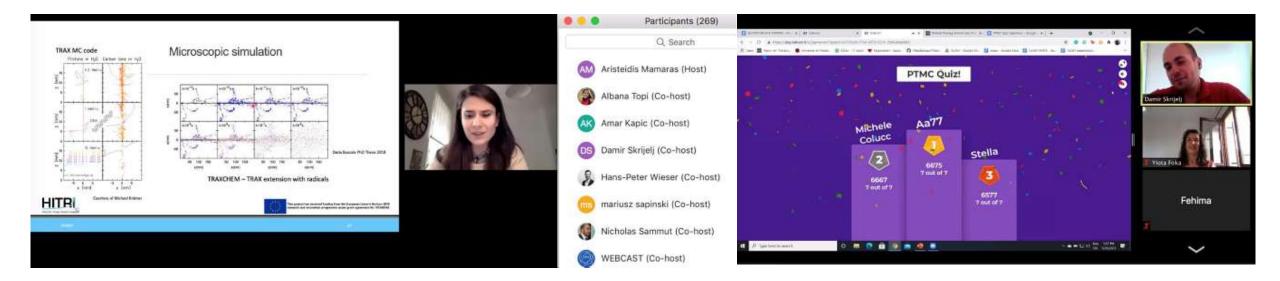
UNSA/DKFZ

Rebecca Taylor

PhD student

ICL/CERN

Every evening 18:00-19:00 CET


8 moderators on various topics
From Networking, to the Career Fair
Themes and Dress Code

Statistics Out of a total of 36 speakers, 18 female Plus 25 students' presentations

Gender equality and students presentations

Timetable: https://indico.cern.ch/event/1024183/

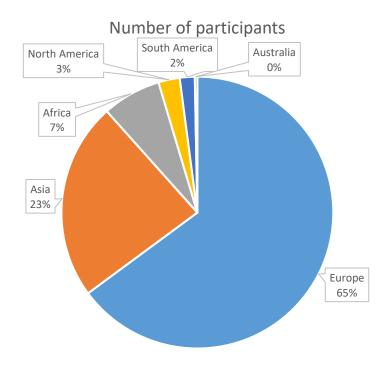
Northern Europe: 61 participants **Easthern Europe:** 79 participants Western Europe: 124 participants **Southern Europe:**

231 participants

Expanding in Europe and beyond

European countries:

> 495 partipants


Non-European countries:

> 470 participants

Heavy Ion Therapy Masterclass School

Expanding in Europe and beyond

	Europe	Asia	Africa	North America	South America	Australia
Number of participant s	436	158	47	17	12	2

India, Egypt, Australia Cameroon, Thailand, Iran, USA, Jordan, Nigeria, Ghana Azerbajan, Singapore, South Africa, Malaysia, Colombia, Mexico

https://indico.cern.ch/e/HeavyIonTherapyMasterClass

Demonstrates potential of young generation

Recordings and presentations

Recordings and presentations

available in the timetable **Total:** 1050 participants

Statistics

Total: 35.5 h

Lectures: 18 h

Hands-on 7.5 h

Students sessions: 5 h

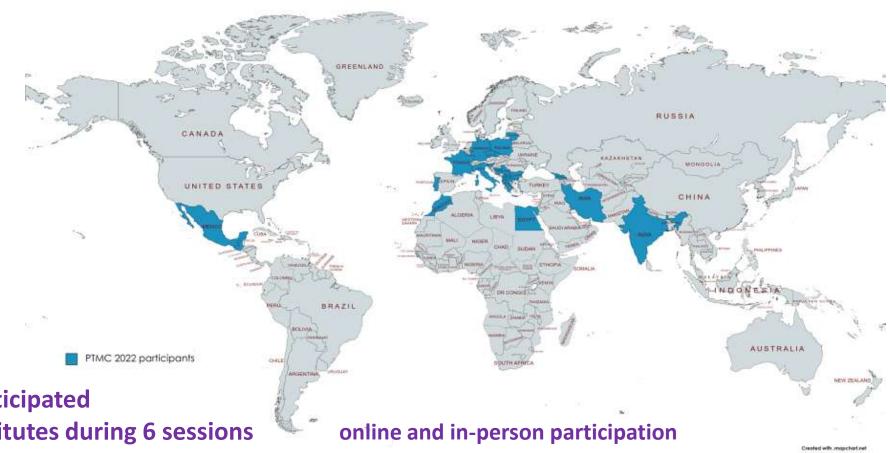
- Social Events: 5 h

Breakdown of participants

- > 36 lecturers
- 222 young researchers
- > 234 PhD students
- 197 Master students
- 276 Undergraduate sudents

Participants of online PTMC in IMC2021

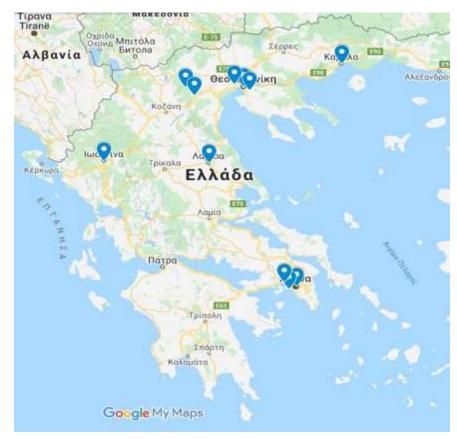
PTMC: https://indico.cern.ch/event/840212/



PTMC2021 online: more than 1500 students participated from 20 countries and 37 institutes during 6 sessions

Participants of online PTMC in IMC2022

PTMC: https://indico.cern.ch/event/840212/



PTMC2022 online:
more than 1500 students participated
from 22 countries and 37 institutes during 6 sessions

web pages with agendas of every institute with material in different languages, publicly available for future events

PTMC2021 online: through Library of Veroia

Total of 366 live views from at least 20 major regions of Greece

- Press Release published in nation-wide media
- Post on Facebook resonated with **3,600** people
- •Announcement viewed 941 times on website

PTMC in Greece

PTMC2022 online: more than 150 participants for hands-on

AUTH uni, Dimokritos research centre, Papageorgiou Hospital, Technopolis. Publicity: Library of Veroia extended networks and national press

PTMC in **SEE** countries

Use PTMC to support capacity building in SEE Promotion through the SEEIIST PR team

Almost all SEEIIST members in PTMC2021 and more in PTMC2022

MASTERCLASS in Particle Therapy

Focusing on the treatment of cancer tumours with charged particles

PTMC in **SEE** countries

Use PTMC to support capacity building in SEE Promotion through the SEEIIST PR team

Almost all SEEIIST members in PTMC2021 and more in PTMC2022

Aims:

- establish (national) networks
- involve host institutes, medical communities....
- complement current bottom-up with top-down approach involving relevant education/science ministries/channels
- international event:
 bring in contact students around the world,
 highlight benefits of international collaborations

MASTERCLASS in Particle Therapy

Focusing on the treatment of cancer tumours with charged particles

Aims and expectations

- > Attract high-school students to physics/STEM
- Cultivate confidence through the hands-on (I can do it !)
- > Handle prejudices, Support female students
- Create groups of Uni assistants/tutors that learn better in order to teach
- > Enhance awareness of public, Demonstrate a return to society from fundamental research
- > Prepare future generations aware of importance of fundamental research and its applications

Acknowledgements PTMC

matRad Developers

Wahl, Niklas Bangert, Mark **Hans-Peter Wieser**

DKFZ Heidelberg

LoC: Wahl, Niklas Katrin Platzer, Malte Ellerbrock Noa Homolka Amit Ben Antony Bennan

GSI

LoC: Yiota Foka

GSI Biophysics:

Christian Graeff, Radek Pleskac

GSI ALICE, EMMI:

Ralf Averbeck, Malzacher, Peter

GSI IT:

Thorsten Kollegger, Behnert, Katharina Osdoba, Sascha

Sponsors: Edmond Offermann

CERN (staff and users)

CERN: tutors

Loc Org: Nikolaos Charitonidis

Alexander Gerbershagen Evangelia Dimovasili Elena Benedetto

CERN/ARIES: Maurizio Vretenar, Valerie Brunner CERN/ENLIGHT: Manjit Dosanjh Petya Georgieva CERN/KT: Manuela Cirilli Anais Rassat Rita Ferreira

Giovanni Porcellana

CERN: Visits Service Erwan Harrouch François Butin CERN: Training Centre: Eric Bonnefoy M-L LECOQ

Uni Sarajevo: web pages

Amila Avdic Amra Ibrahimovic Mirsad Tunja Damir Skrijeli

Online mode, web pages, training

Aris Mamaras (AUTH), Damir Skrijelj (UNSA)

General Coordination: p.foka@gsi.de yiota.foka@cern.ch

Acknowledgements PTMC

PTMC2022 core team

matRad Developers

Wahl, Niklas Bangert, Mark Hans-Peter Wieser

DKFZ Heidelberg

LoC: Wahl, Niklas
Katrin Platzer, Malte Ellerbrock
Noa Homolka Amit Ben Antony Bennan

<u>GSI</u>

LoC: Yiota Foka

GSI Biophysics:

Christian Graeff, Radek Pleskac

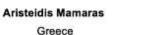
GSI ALICE, EMMI:

Ralf Averbeck, Malzacher, Peter

GSI IT:

Thorsten Kollegger, Behnert, Katharina Osdoba, Sascha

Sponsors: Edmond Offermann



(B&H)

MSc student, AUTh/CERN

MSc UNSA/DKFZ/medAustron

Damir Škrijelj

Amar Kapić

Montenegro PhD student, EPFL/CERN

PhD student, EPFL/CE

Deianira Feizai

Albania

MSc student, Uni Brescia

Verania Echaide Navaro

Mexico

PhD student, UNAM

General Coordination:

p.foka@gsi.de
yiota.foka@cern.ch

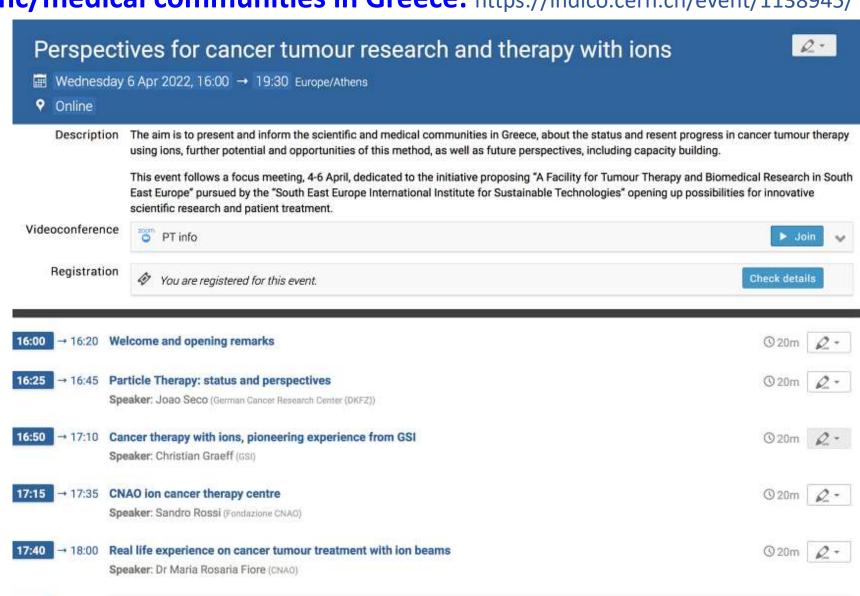
Online Scientific Info Event on Particle Therapy

Information event for scientific/medical communities in Greece: https://indico.cern.ch/event/1138945/

6 April 2022

Under the auspices of AUTH

Speakers:


DKFZ German Cancer Research Center CNAO therapy centre GSI, CERN, IAEA and AUTH

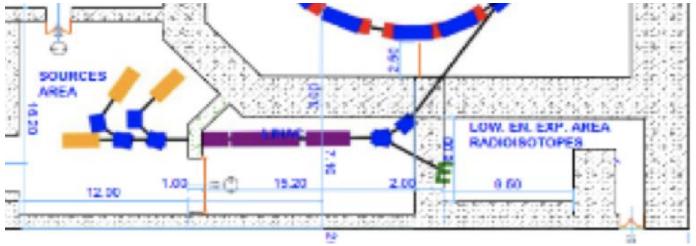
Introductory info event

6 November 2020

https://indico.cern.ch/event/968289/

Presentations and recordings available

Online event and radio-isotope production


One of the speakers from AUTH young generation: Aris Mamaras

SEEIIST 2D plans of accelerating structures and beam delivery systems (bunker)

Radio-isotope production exploiting linear accelerators

- project exploring
- the use of linear accelerators for radioisotope productions
- the use of the linac injector for radioisotope production

Submission of EU proposal: STRONGER4CANDER Coordinator: AUTH

forming tight groups continuing collaborations

Συνέδρια και ενημερώσεις για κοινό

Συνέδρια για experts

Θέμα: οφέλη για την κοινωνία από την βασική έρευνα

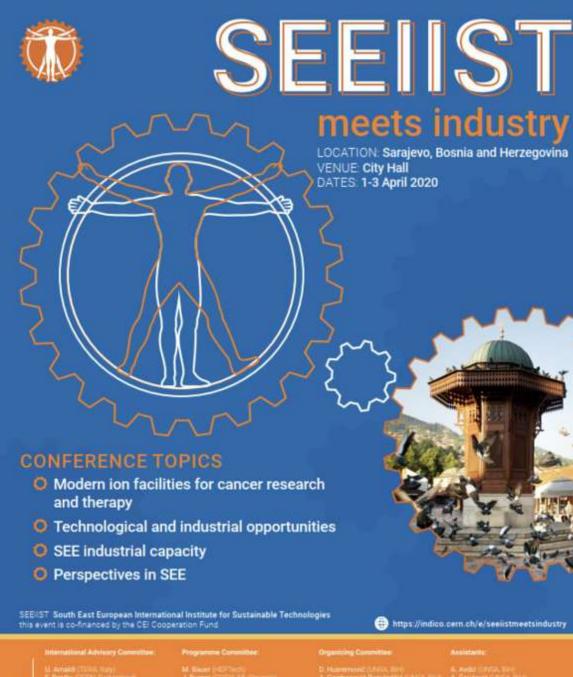
Workshop in Sarajevo

Sponsored by:

- Central European Initiative (CEI)
- "Three Physicists" Foundation

Attract SEE and WE companies, initiate collaborations

SEEIIST meets Industry


16-18 Sep 2020 Sarajevo City Ha **New Proposed Dates: 1st week of October 2022**

Organization Conference Poster Objectives and Scientific Programme Agenda Timetable Registration

Important information:

Following the evolution of covid-19 pandemics, in particular in SEE region, and related travel restrictions, with great regret, we have to announce that the "SEEIIST meets Industry" conference has to be postponed again.

Several options are considered in terms of format and dates and we'll inform you on new plans around early September.

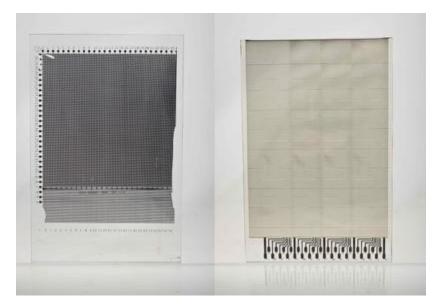
Οφέλη από επιταχυντές για την Κοινωνία

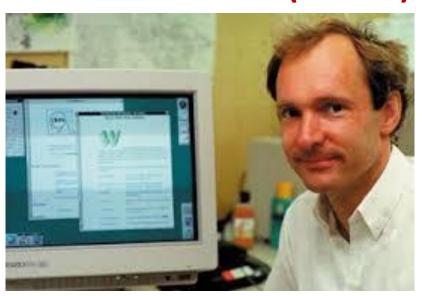
Accelerator and Society

Over 30'000 particle accelerators are in operation world-wide.

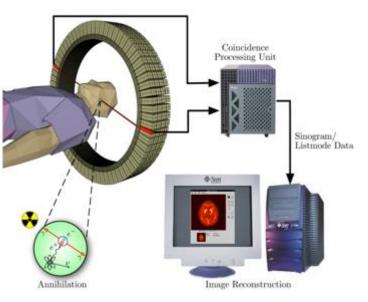
Only ~1% are used for fundamental research.

Medicine is the largest application with more than 1/3 of all accelerators.


Research		6%
	Particle Physics	0,5%
	Nuclear Physics, solid state, materials	0,2 - 0,9%
	Biology	5%
Medical Applications		35%
	Diagnostics/treatment with X-ray or electrons	33%
	Radio-isotope production	2%
	Proton or ion treatment	0,1%
Industrial Applications		<60%
	Ion implantation	34%
	Cutting and welding with electron beams	16%
	Polymerization	7%
	Neutron testing	3.5%
	Non destructive testing	2,3%

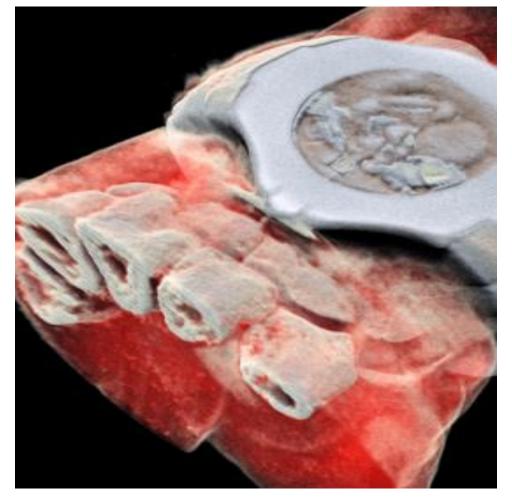

Οφέλη για την Κοινωνία από Θεμελιώδη Έρευνα

Οφέλη για την κοινωνία


Αν και η έρευνα για τα βασικά επιστημονικά ερωτήματα της Φυσικής δεν αποσκοπεί στην παραγωγή "προϊόντων" άμεσης χρησιμότητας, εντούτοις πολλές εφευρέσεις ωφέλιμες για τον απλό άνθρωπο ξεκίνησαν από την έρευνα της φυσικής στο CERN.

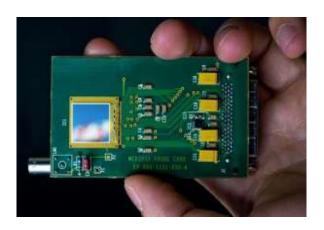
Οθόνη Επαφής (touchscreen) World Wide Web (WWW)

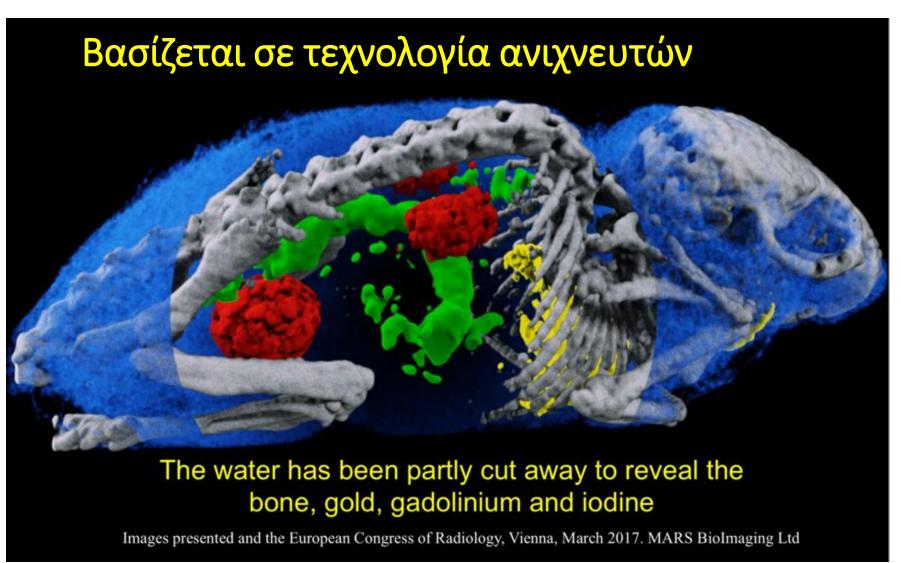
PET scan



Tim Berners-Lee

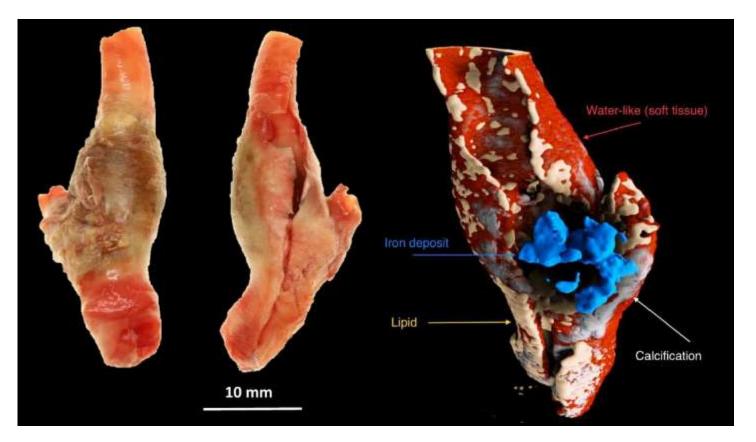
Ο σκοπός των ερευνητικών κέντρων είναι η βασική έρευνα, η κατάκτηση γνώσης. 76


Έγχρωμες ακτινογραφίες



Έγχρωμες ακτινογραφίες

Από την ανίχνευση σωματιδίων με ανιχνευτές silicon pixel στην έγχρωμη «ακτινογραφία» (Medipix)



Έγχρωμες ακτινογραφίες

Μοριακή απεικόνιση

Καρδιαγγειακές ασθένειες: αιτία των 37% των θανάτων στην EU. Steven Gieseg, Uni. Canterbury

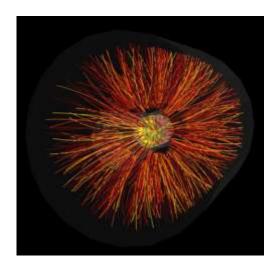
MARS Bioimaging

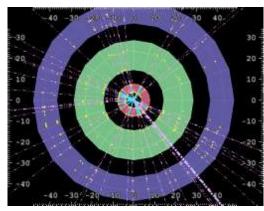
 3D colour X-ray scanner using CERN Medipix technology arrived at the Lausanne University Hospital (CHUV) to start clinical trials.

CT scanner πρωτονίων ALPIDE ALICE

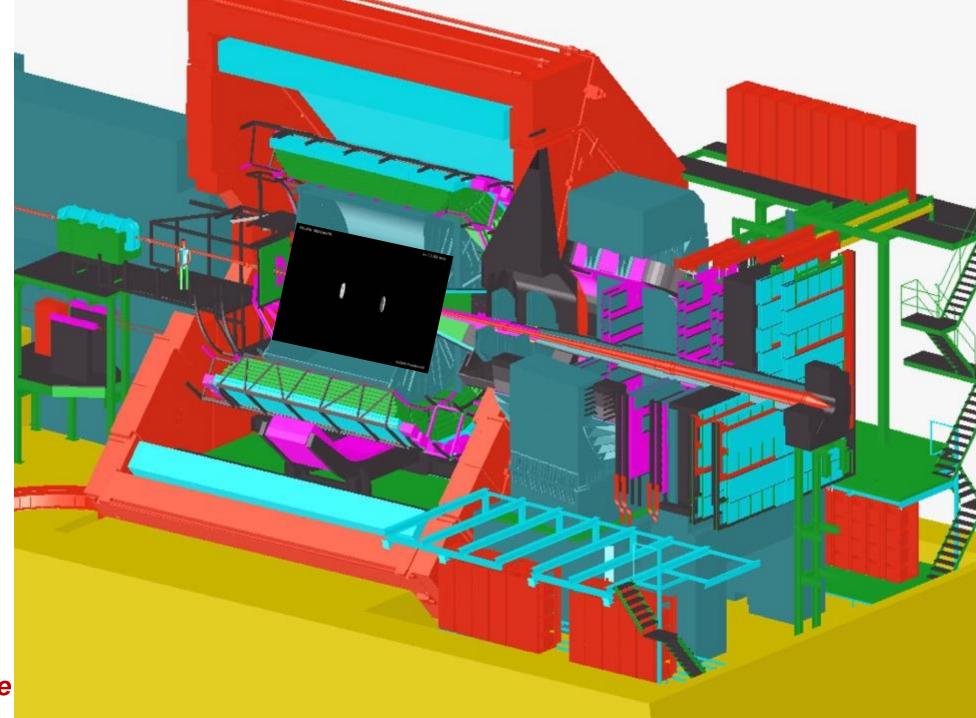
ALPIDE: A New Methodology for Proton CT

Success Story

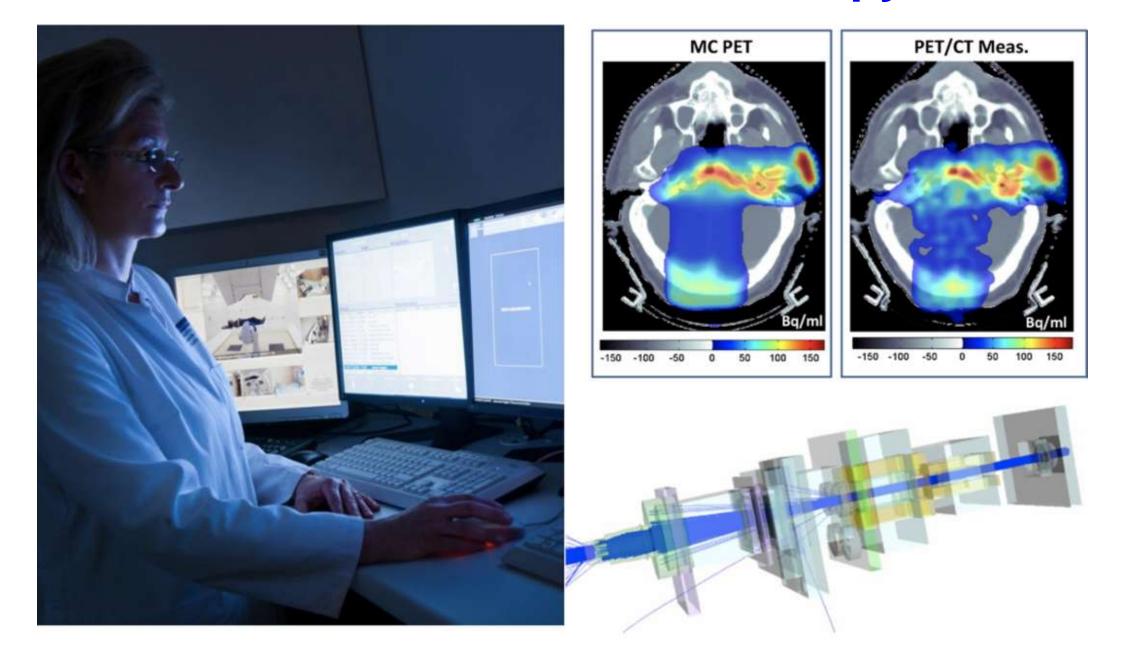




Ανιχνευτής ALPIDE: A new Monolithic Active Pixel Sensor


A new Monolithic Active Pixel Sensor, originally developed to upgrade the ALICE inner tracking system during the second long shutdown of LHC, is on its way to Bergen University for a very different application - Proton Computed Tomography (Proton CT). The University will use the technology for research and development of a Proton CT proof-ofconcept project using the high time and space resolution of the ALPIDE chip. Proton CT is a technique based on the measurement of a proton's position/trajectory and energy before and after traversing an object to reconstruct an image of the object. Unlike conventional X-ray CT systems, where the technology is widely understood, proton CT still faces some technological challenges

Πείραμα ALICE ηλεκτρονική κάμερα



First LHC event reconstructed online

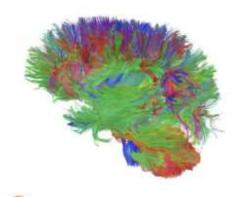
Simulations for hadron therapy

Big Data for health

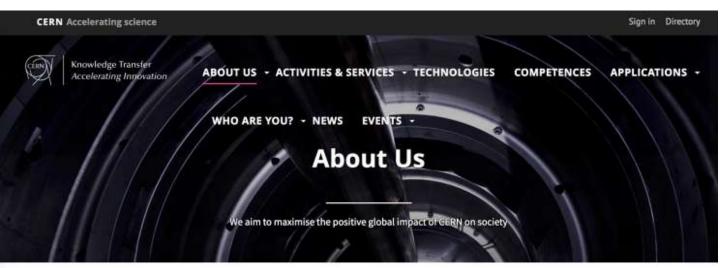
CERN Openlab

BioDynaMo — The Biology Dynamic Modeller

- Platform for high-performance simulations of biological dynamics
- Involves detailed physical interactions in biological tissue
- Highly optimised and parallelised code
- To be run on hybrid (multi-core, manycore) cloud environments
 - · Cortical column: 10k neurons brain cancer
 - Cortical sheet: 10m neurons epilepsy
 - Cortex: 100m 10bn neurons schizophrenia

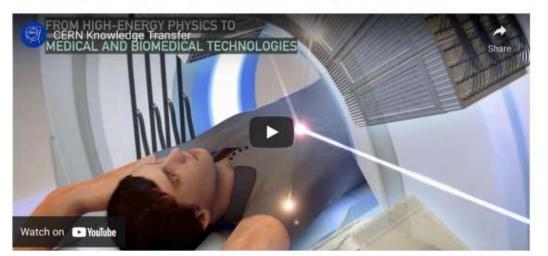


- Based on data from the TwinsUK project, the biggest UK adult twin registry (more than 11000 twins, 300 TB genomics data)
 - Formal interface: King's College London
 - Behind KCL: entire consortium working on Twins UK (~ 50 institutes)
- Evaluate if the optimised ROOT file format and analysis features are more efficient for this type of studies than BAM and standard genomic analysis tools
- Evaluate Seagate Kinetics key/value storage facility for this type of cases



Information in Knowledge Transfer pages

https://kt.cern/news


Our Mission

Places like CERN contribute to the kind of knowledge that not only enriches humanity, but also provides the wellspring of ideas that become the technologies of the future.

— Fabiola Gianotti, Director-General of CERN 77

Our mission

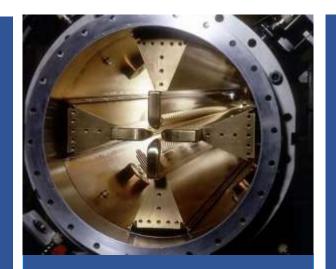
The Knowledge Transfer group at CERN aims to engage with experts in science, technology and industry in order to create opportunities for the transfer of CERN's technology and know-how. The ultimate goal is to accelerate innovation and maximise the global positive impact of CERN on society. This is done by promoting and transferring the technological and human capital developed at CERN. The CERN KT group promotes CERN as a centre of technological excellence, and promotes the positive impact of fundamental research organisations on society.

ABOUT US Our Mission Our Team Organisational Chart Annual Report Press Kit Newsletter KT Partners @CERN External Coverage

UPCOMING DEADLINES

BSBF 2022 - Register now

30 April, 2022


Innosuisse Business

CERN's MEDICIS facility produced the first samples for targeted alpha therapy.

CERN and SEEIIST have produced a design report of an innovative facility based on a room-temperature synchrotron.

CERN and CIEMAT completed the first out of four modules of a RFQ for a future carbon-ion therapy linear accelerator.

CERN assembled the first high-temperature superconductor prototype coil for GaToroid.

https://kt.cern/news

Aerospace Applications

- Partnership with ESA in the field of quantum technology and artificial intelligence models for earth observation (QUAI4EO).
- The ESA-supported CHIMERA project to adapt the CHARM irradiation facility for heavy ion testing.

Lumina

Astronaut Thomas
 Pesquet activated
 Lumina, a CERN tested
 optical fibre-based
 dosimetry experiment,
 on board the
 International Space
 Station.

Financial Markets

- CERN data analysis tool ROOT protects commodity and financial markets from fraud, in partnership with CORMEC and Wageningen University.
- Partnership with Jumptrading to improve speed and scalability of CERN Virtual Machine File System for worldwide software distribution.

Ευκαιρίες για Νέους

Ευκαιρίες για νέους στο GSI/FAIR

GET_INvolved Programme

WHAT Specific

Internships

for enrolled students in Bachelors/Masters degree in science and engineering.

Traineeships

for students having a Masters degree in science and engineering.

Research Experience

for enrolled PhD students or recent doctorates (postdocs) or equivalent.

Contact us - Join the journey!

Ευκαιρίες για νέους στο GSI/FAIR

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Studies and career

FAIR and GSI employ about 1.580 people. In addition approximately many external scientists per accelerator facility and the experimental sites. Join us and strengthen our teams.

GSI Helmholtzzentrum für Schwerionenforschung

International Summer Student Program at GSI-FAIR

July 25 - Sep. 15, 2022

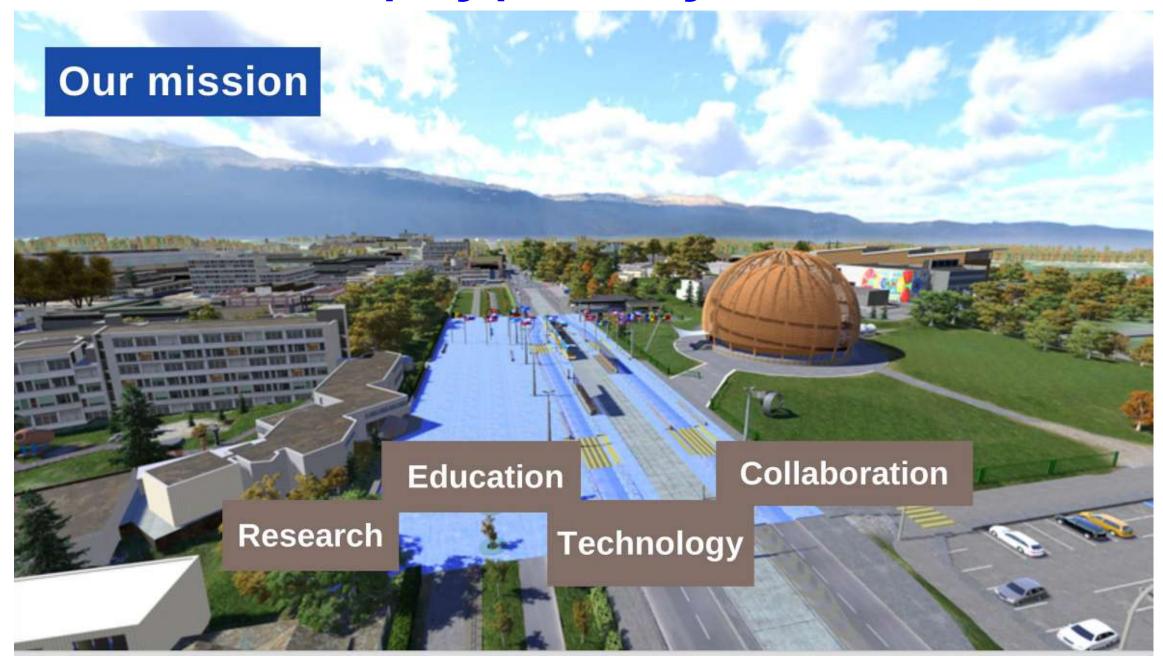
RESEARCH LIVE for UNDERGRADUATES

experience research in a major accelerator laboratory

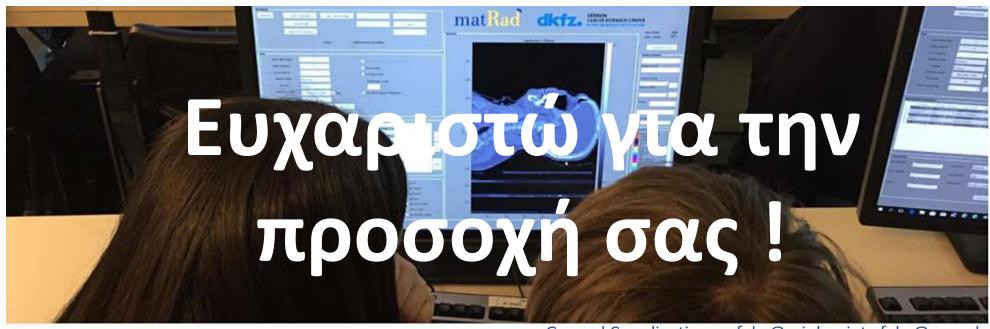
During the summer months of 2022 GSI and its graduate school HGS-HIRe organize an International Summer Student Program (ISSP) which is offered to students on the advanced undergraduate and Master level with at least three years of study completed upcoming summer: i.e. students during their last-year Bachelor or Master studies in physics or related natural science and engineering disciplines from Europe or GSI/FAIR partner countries. Since spring 2010 the Summer Student Program is organized within the program canon of the Helmholtz Graduate School for Hadron and Ion Research (HGS-HIRe).

The application term is closed and will be reopened during the month of December for the next year's Summer Program.

Job Offers of GSI and FAIR


and Live Text.

■ Green IT Cube becomes research and transfer center — 5.5 million euros EU funding for the supercomputing center of GSI and FAIR



Ευκαιρίες για νέους στο CERN

How can YOU take part? Ευκαιρίες για νέους Summer students Doctoral students Technical students Administrative students CERN fellows High School Teachers' Programme Positions (HR Department) web pages Visits Virtual visits Participation in masterclasses Beamline for schools competition CERN_JOBS Contact careers.cern CERN_JOBS Us **CERNI Talent Acquisition** @CERN recruitment.service@cern.ch CERNJOBSTV

Υποστηρίζοντας ανάπτυξη ικανοτήτων για την επιδίωξη κοινών έργων στον αγώνα κατά του καρκίνου.

General Coordination: p.foka@gsi.de yiota.foka@cern.ch

Backup Opportunities at CERN

Technical Student Programme

Project examples

Mechanical Engineering

- Human Robot Interface Development
- HL-LHC collimators technical support

Applied Physics

- Electron Cooling studies in AD and ELENA
- Vacuum design and simulations for a Hollow Electron Lens in the LHC

IT, Mathematics, Robotics

- Full-Stack Developer
- Evolution of Software Development Tools

Material and Surface Science

- Thermo-mechanical characterization of advanced materials up to 2000°C
- Vacuum compatibility studies of mild steel

Electrical or Electronics Engineering

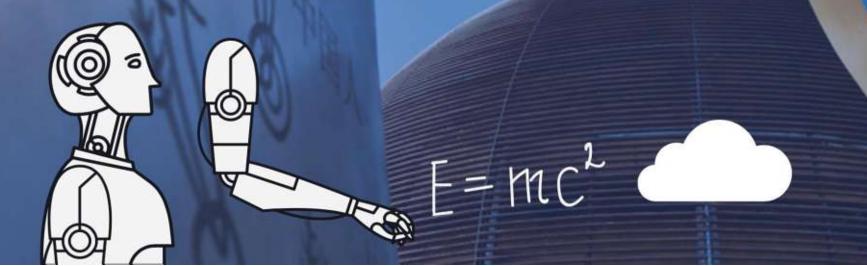
- FPGA development for radiation testing
- Modeling of LHC superconducting magnet circuits

General and Civil Engineering

Geographical Information System for FCC

Technical Student Programme

c.200 positions/year


Fields: Applied physics, engineering, computing

Lenght: 4 to 12 months

Eligibility: 18 months of undergraduate studies

Features: A technical project with a CERN supervisor, and a living

allowace, incl. health insurance

Summer Student Programme

c. 300 positions/year

Fields: Physics, engineering, computing

Lenght: 8 to 13 weeks, during the summer

Eligibility: 3 years of full-time undergraduate studies

Features: High-quality lecture programmes, visits, and workshops

Doctoral Student Programme

c.80 positions/year

Fields: Applied physics, engineering, and computing

Lenght: 6 months - 3 years

Eligibility: Enrolled in a doctoral programme

Features: A technical project, leading to a PhD thesis

co-supervisored by the university thesis advisor and

a CERN staff member

A living allowance, incl. health insurance.

Fellowships

c.250 positions/year

Fields: Physics, engineering, computing, administrative - from recent graduate engineers to post-doc research physicists

Lenght: 2-3 years

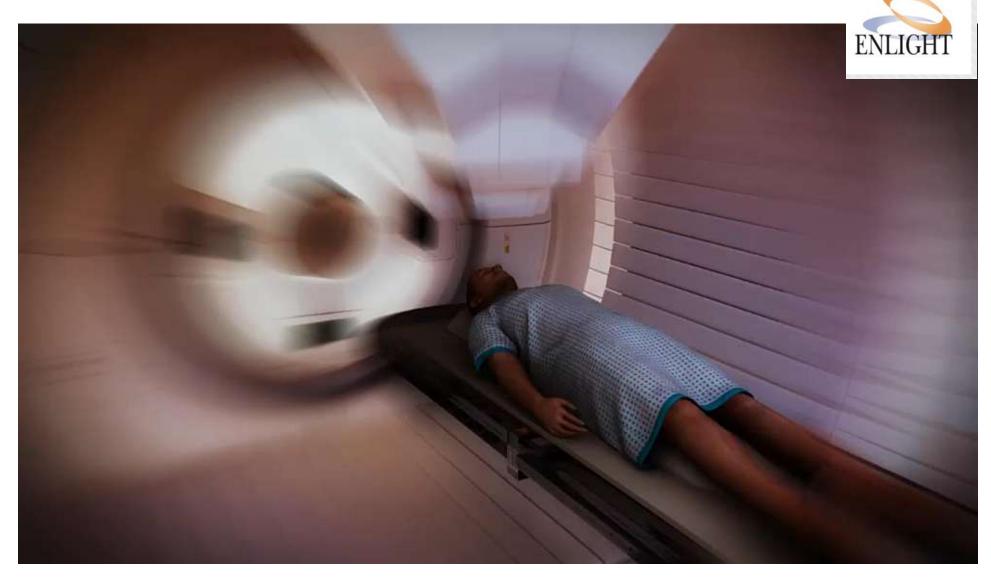
Eligibility: BSc, MSc or PhD

Features: Employment contract, attractive salary and benefits, training, and networking

Staff positions

c.150 positions/year

Fields: Physics, engineering, computing, and administrative


Lenght: Up to 5 year initial limited duration contract

Eligibility: From apprenticeship to PhD

Features: Relocation, installation benefits, training (language

courses, technical training)

cern.ch/virtual-hadron-therapy-centre

