High resolution X-ray spectroscopy of electronic and atomic structure of TiO₂ nanostructures and charge transfer processes

<u>Federico Boscherini</u>

Department of Physics and Astronomy University of Bologna, Italy

federico.boscherini@unibo.it

Thessaloniki, May 31st, 2018

Plan

- X-ray Spectroscopies: XAFS, XES & RIXS
- TiO₂ nanostructures for photocatalysis

 Au/TiO₂: plasmon induced hot electron transfer studied by differential illumination X-ray spectroscopy
 - \odot V-doped TiO_2 dopant matrix electron transfer
 - Ultra fast transient optical spectroscopy
 - Differential illumination X-ray spectroscopy

X-Ray Absorption Fine Structure

 "EXAFS": Coordination numbers Interatomic distances Disorder of distances
 "XANES": Absorber symmetry and valence/oxidation state Electronic structure of unoccupied states Medium range structure

XAFS and X-ray Emission Spectroscopy

<u>Resonant Inelastic X-ray Scattering</u>

RIXS and fluorescence lines

- Above the edge fluorescence lines (e.g. K_α, K_β) are at fixed energy
- In the RIXS plane fixed energy lines lie on a straight line with slope = 1
- Near the edge the distribution of intensity is more complex

<u>Resonant Inelastic X-ray Scattering</u>

 RIXS is a second order scattering process described by the Kramers – Heisenberg formula

$$\frac{d\sigma}{d\Omega} = r_0^2 \omega \omega'^3 \left| m \sum_n \left[\frac{\left(\hat{\varepsilon}' \bullet \vec{r}_{bn}\right) \left(\hat{\varepsilon} \bullet \vec{r}_{na}\right)}{\left(E_n^0 - E_a^0 - \hbar\omega\right)} + \frac{\left(\hat{\varepsilon} \bullet \vec{r}_{bn}\right) \left(\hat{\varepsilon}' \bullet \vec{r}_{na}\right)}{\left(E_n^0 - E_a^0 + \hbar\omega'\right)} \right] \right|^2$$

 $\overline{}$

High Energy Resolution Fluorescence Detection

HERFD

- Plot the scattered intensity as a function of incident photon energy for different "cuts" in the RIXS plane
- Obtain "high resolution" XAFS - HERFD

Local structure and charge transfer in doped TiO₂ photocatalysts

Energy and environmental challenges

- Production of fuels from renewable energies
- Purification of water from toxic pollutants / bacteria

Synthesis of solar fuels and water purification: semiconductor photocatalysts

Fundamental steps involved: Generation of charge carriers by photoexcitation Separation and migration to trapping sites Interfacial charge transfer

X. Chen, M. Grät Requirements:

Absorption in the solar spectral range
Energy of conduction band and valence band adapted to the reduction / oxidation potential (PEC) water eration

(1972)

2H⁺

neous

0-

•OH, $\bullet O_2^-$, H_2O_2 very active in degradation of contaminants and inactivation of

J Mat Chem 20 (2010)

Microorganism

Light

microorganisms

1st generation benchmark: TiO₂ Anatase [010] Rutile [001] 1.946 Å titanium H⁺/H₂ 1.23 eV oxygen 3.0 - 3.2 eV O₂/H₂O 98.9 [010] 1.983 Å [100] [100] [001] SEMICONDUCTOR ELECTROLYTE

- Iong-term photostability and inertness to chemical environments
 earth abundant material, nontoxic
- © CB / VB energy suitable for water splitting
- $\ensuremath{\mathfrak{S}}$ absorbs only a small portion
- of the solar spectrum

2nd generation photocatalysts: doped TiO₂

13 JULY 2001 VOL 293 SCIENCE

REPORTS

Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides

R. Asahi,* T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga

Systems studied

Plasmon enhanced absorption

Au NP:TiO₂

- Plasmon resonance in NP to increase light absorption
- Differential illumination to study charge transfer

<u>V:TiO₂</u>

- V reduces band gap
- Ultra fast transient absoprtion spectroscopy
- Location of V
- Differential illumination to study charge transfer

Plasmonic Photocatalysis

International Edition: DOI: 10.1002/anie.201412030 German Edition: DOI: 10.1002/ange.201412030

Probing Long-Lived Plasmonic-Generated Charges in TiO₂/Au by High-Resolution X-ray Absorption Spectroscopy**

L. Amidani et al., Angew. Chem. Int. Ed. 54, 5413 (2015)

Surface plasmon resonance in Au NPs

- Sensitize TiO₂ to visible light by coupling TiO₂ with metallic nanoparticles to exploit the surface plasmon resonance
- Enhanced photocatalytic activity
- Origin?
 - Energy transfer
 - Hot electron transfer

Samples

(* 10⁸ (M s⁻¹)

- TiO₂ NP by sol gel method
 - Anatase from XRD and XANES
 - «white», «black» (O vacancies) and N – doped samples
- Au NP from HAuCl₄, 10% in weight
- Au NP: increase rate constant for degradation of formic acid

Differential RIXS experiment

- Ti Kβ RIXS, ID26 ESRF
- Dark / light, $\lambda = 532$ nm, 200 mW in 1 mm spot
- Au NP cause differences in dark

 – light spectra

Differential Spectra

laser on⁻

spectral differences for

_ TFY HERFD-I

Electron transfer from Au to TiO₂

Simulation by edge shift

 Assumes same lineshape: no structural rearrangement

One step further: different "cuts" in the RIXS plane

F. de Groot, *AIP Conf. Proceed.* 2007, 882, 37 – 43 D. Cabaret et al., Phys. Chem. Chem. Phys. 2010, 12, 5619 J. Vanko et al., arXiv:0802.2744, 2008

Interpretation

Hot electrons generated by SPR in Au are injected to Ti unoccupied orbitals: hot electron transfer

Injected electrons in localized or de-localized orbitals have different effect

- De localized: small structural rearrangement
- Localized: greater structural rearrangement

V: TiO₂ nanoparticle assembled films

V: TiO₂ nanoparticle assembled films

V-doped TiO₂ nanoparticle films

- Particle size 10 20 nm
- Mixture of rutile & anatase, depends on deposition rate

V-TiO₂ Optical Properties

- V-doping: increase of the absorption coefficient in the visible region.
- In particular, the enhancement is localized between 350 and 550 nm

 TiO_2

TiO₂

V-TiO₂ photocatalysis

- Reduction of NO₂ group in 4nitrobenzaldehyde $(NO_2-C_2H_4-CHO)$ to $NH_2-C_2H_4-CHO$ under irradiation with $\lambda > 450$ nm light
 - \circ 9 × 10⁻⁵ M solution of NO₂-C₂H₄-CHO in a CH₃N/C ₃H₈O (4/1) mixture

V-TiO₂ water splitting

- TiO₂ and V-TiO₂ NP based photoanodes in a photoelectrochemical cell
 - H₂O/acetylacetone solution
- Photon current conversion efficiency is enhanced for V-doped NP for λ > 360 nm

V: TiO₂ nanoparticle assembled films: ultra fast transient optical spectroscopy

Rossi et al., submitted to Appl. Cat. B

Optical Transient Absorption Spectroscopy

Optical Transient Absorption Spectroscopy

 Above band gap (355 nm) excitation of TiO₂ NPs Voshihar

Yoshihara et al. J. Phys. Chem. B, Vol. 108, 2004

Above bandgap excitation (330 nm)

- Rise time of E signal < 80 fs: free electrons
- Fast + slow decay components
 - Fast: 2nd order
 kinetics, E H
 recombination
 - Slow: exp decay, relaxation to deep traps in bulk

Setup Settings

- Pump Wavelength: 330 nm
- Photon per Pulse (Pump): $8.3 \cdot 10^{12}$
- Fluence: $2.1 \cdot 10^{16} \frac{ph}{mm^2 \cdot s}$
- Probe rate: **1 KHz**

Above bandgap excitation

- Doping: speed up of fast decay component
 - Dopant induced traps

- Pump Wavelength: **330 nm**
- Photon per Pulse (Pump): $8.3 \cdot 10^{12}$
- Fluence: $2.1 \cdot 10^{16} \frac{ph}{mm^2 \cdot s}$
- Probe rate: **1 KHz**

Above bandgap excitation

- TH rise time ~
 200 fs: diffusion from bulk to surface
- TH signal
 - \circ TiO₂: no decay
 - V-TiO₂: 50% decay in 300 ps

Below bandgap excitation (530 nm)

Ε

 Persistent E signal, signature of long lived electrons on NP surface

V: TiO₂ nanoparticle assembled films: site location of V

Article

pubs.acs.org/JPCC

Local Structure of V Dopants in TiO₂ Nanoparticles: X-ray Absorption Spectroscopy, Including Ab-Initio and Full Potential Simulations

Giacomo Rossi, Marco Calizzi, Valeria Di Cintio, Sotirios Magkos,[†] Lucia Amidani,[‡] Luca Pasquini, and Federico Boscherini^{*}

Rossi et al., J. Phys. Chem. C 120, 7457-7466 (2016)

V:TiO₂: Ti K - edge

• BM 23 @ ESRF

disordered replica of rutile (2) or anatase (5)

V:TiO₂: V K - edge

- Main edge: incorporation site is similar to matrix
- Pre-edge:

 oxidation state
 of V is mixture
 of 4+ (bulk) and

 5+ (defective,
 surface sites)

V:TiO₂: V K – edge simulations

- Structural simulations with QUANTUMESPRESSO
- Spectral simulations with FDMNES (no muffin tin)
- Conclusion: V ions occupy substitutional cationic sites in TiO₂, irrespective of whether it is similar to rutile, anatase, or mixed.

V: TiO₂ nanoparticle assembled films: charge transfer by differetial RIXS

PHYSICAL REVIEW B 96, 045303 (2017)

Element-specific channels for the photoexcitation of V-doped TiO₂ nanoparticles

Giacomo Rossi,¹ Marco Calizzi,¹ Lucia Amidani,² Andrea Migliori,³ Federico Boscherini,^{1,4,*} and Luca Pasquini¹
 ¹Department of Physics and Astronomy and CNISM, University of Bologna, Viale C. Berti Pichat 6/2, 40127, Bologna, Italy
 ²ESRF – The European Synchrotron, CS40220, 38043 Grenoble, France
 ³Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Bologna, Italy
 ⁴Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Strada Statale 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
 (Received 20 February 2017; revised manuscript received 1 June 2017; published 7 July 2017)

Rossi et al., Phys. Rev. B 96, 045303 (2017)

Differential RIXS on V:TiO₂

- Differential RIXS experiment, ID 26 @ ESRF
- Laser diode on/off, λ = 532 nm
- Ti and V edges

Differential RIXS on V:TiO₂

Differential RIXS on V:TiO₂

- Ti and V edges shift in <u>opposite</u> <u>directions</u>!
- Evidence for simultaneous light induced oxidation of V / reduction of Ti (defective sites)

Physical Mechanism

Two level steady state model

• The excited state fraction n_e obeys

$$\frac{dn_e}{dt} = \frac{(1-n_e)}{\tau_{ge}} - \frac{n_e}{\tau_{eg}}$$

- In the steady state $\tau_{eg} = \frac{n_e}{(1-n_e)} \tau_{ge}$
- Differential HERFD XANES, $n_e \cong 0.2$
- τ_{ge} from optical attenuation and laser fluence
- Lifetime of the trapped state $\tau_{eg} \cong 0.8 \ ms$

Perspectives

- Time resolved x-ray spectroscopy
 - 100 ps time resolution
 with SR storage ring,
 European Synchrotron
 Radiation Facility,
 Grenoble

Perspectives

Time resolved x-ray spectroscopy

 100 fs time resolution possible at European X-ray
 Free Electron Laser, Hamburg

EU-XFEL time structure

- Full burst mode
 - 2700 pulses/600 μs every 100 ms, time between pulses = 222 ns, frequency = 4.5 MHz

600 μs

10 fs

- Intermediate case
 - 120 pulses/600 μs, time between pulses = 5 μs, frequency = 200 kHz
- Single pulse mode
 - 1 pulse every 100 ms
 frequency = 10 Hz.

Johann scanning spectrometer

Von Hamos spectrometer

Collaborators, funding

- Collaborators
 - Bologna: Luca Pasquini, Giacomo Rossi, Marco Calizzi, Nicola Patelli, Alberto Piccioni
 - Stefano Caramori, Serena Berardi (Univ. Ferrara)
 - Alberto Naldoni (CNR Milano), Marco Malvestuto (Elettra)
 - Lucia Amidani, Pieter Glatzel (ESRF)
- Funding: PIK «EX-PRO-REL», PRIN 2015 «NEWLI»

The end

