Applications of XAFS to materials and nano – science

Federico Boscherini

Department of Physics and Astronomy University of Bologna, Italy federico.boscherini@unibo.it www.unibo.it/faculty/federico.boscherini

Plan

- Introduction
 - Review basics of XAFS
 - Characteristics of the technique
 - Role of XAFS
- Examples of applications, using both
 - results which have "stood the test of time"
 - Why? Because we tend to **forget** work done by others some time ago (or don't bother searching the literature) and **do the measurements again**!

 It will get published in the end, but not a good use of time & money!

recent results

X-Ray Absorption Fine Structure

- "EXAFS": Coordination numbers Interatomic distances Disorder of distances
- "XANES": Absorber symmetry and valence/oxidation state
 Electronic structure of unoccupied states
 Medium range structure

- <u>Extended X-ray Absorption Fine Structure</u>
- When applicable, fit with the "standard" EXAFS equation

XANES

• <u>X</u>-ray <u>Absorption Near Edge Structure</u> (also NEXAFS)

$$\sigma(\hbar\omega) = 4\pi^2 \alpha \hbar \omega |\langle i | \hat{\varepsilon} \bullet \vec{r} | f \rangle|^2 \rho(E_f) \qquad \begin{array}{l} \Delta \ell = \pm 1, \ \Delta m_\ell = 0\\ (\text{lin.pol.light}) \end{array}$$

- "Molecular orbital" approach: 1 electron approximation, constant matrix element: probe site and symmetry projected density of states of final electronic states
- "Multiple scattering" approach: structural interpretation through simulation

Characteristics of XAFS

- Atomic selectivity (choose Z via photon energy)
- Equally applicable to ordered or disordered matter
- A core level technique: a local probe
- Interesting underlying physics
- Sensitive to high dilutions
- EXAFS: high distance resolution
- XANES: 3D structural sensitivity
- Recent developments:
 - Sub μ m spot size
 - ns, ps and ...fs time resolution
 - Combined use of XES / RIXS

Role of XAFS in Materials Science

Physical Properties Growth Structure Nakamura et al., Jpn. J. Appl. Phys. 35, L217, 1996 XAFS

<u>Objective</u>: an understanding of physical properties of novel materials based on knowledge of their local structure

Today's topics

- Dopants, defects
- Alloys
- Phase transitions
- Nanostructures
- Charge transfer

XAFS and dopants/dilute elements

- Only the structure around the photo-excited atom is probed
- Fluorescence detection greatly enhances sensitivity
- Present sensitivity limit (depends on sample)
 - dopants in the bulk
 - EXAFS $\sim 10^{18} \text{ at/cm}^3$
 - XANES ~ 10^{17} at/cm³
 - thin films (single layer) $\sim 10^{14}$ at/cm²

Si in GaAs

S. Schuppler, D.L. Adler, L.N. Pfeiffer, K.W. West, E.E. Chaban, and P.H. Citrin, Appl. Phys. Lett. **63**, 2357 (1993) and <u>Phys. Rev. B **51**</u>, 10527 (1995)

- Si common dopant in GaAs
- Si:GaAs exhibits <u>deactivation</u>
- Accepted explanation : amphoteric nature of Si
 - Si_{Ga} (Si in Ga site): donor
 - Si_{As}: acceptor
 - At low concentration all Si_{Ga}, at higher concentrations both: <u>autocompensation</u>

Si in GaAs: XANES

- Samples studied
 - Si:GaAs(001)
 - at low concentration Si_{Ga}
 - Si:GaAs(311)A
 - at low concentration Si_{As}
- XANES exhibit reasonable evolution with concentration
- Difference in lineshape between Si_{Ga} and Si_{As} due to difference in charge on Si and conduction band DOS

Si in GaAs: XANES

 Fitting of Very High concentration sample indicated that lineshape cannot be explained only on the basis of combination of Si_{Ga} and Si_{AS}

Absorption (arb. units)

Si in GaAs : EXAFS

- Compare EXAFS spectra with those of Si_xGe_{1-x} random alloys
- Ge has similar scattering amplitude to Ga and As
- VH sample spectrum very similar to Si_{0.2}Ge_{0.8}
 – 20% of Si is bonded to Si
- <u>Conclusion</u>: deactivation due also to presence of <u>Si dimers and clusters</u>

Fe in GaN

•A. Bonanni, A. Navarro-Quezada, Tian Li, M. Wegscheider, Z. Matěj, V. Holý, R. T. Lechner, G. Bauer, M. Rovezzi, F. D'Acapito, M. Kiecana, M. Sawicki, and T. Dietl, Phys. Rev. Lett. **101**, 135502 (2008)

• M. Rovezzi, F. D'Acapito, A. Navarro-Quezada, B. Faina, T. Li, A. Bonanni, F. Filippone, A. Amore Bonapasta, and T. Dietl, Phys. Rev. B 79, 195209 (2009)

• A. Navarro-Quezada, W. Stefanowicz, Tian Li, B. Faina, M. Rovezzi, R. T. Lechner, T. Devillers, F. D'Acapito, G. Bauer, M. Kiecana, M. Sawicki, T. Dietl, and A. Bonanni Phys. Rev. 81, 205206 (2010)

- Candidate material for spintronic applications
- Grown by Metal Organic Vapor Phase Epitaxy
- Fe concentrations $4 \times 10^{19} \text{ cm}^{-3} - 4 \times 10^{20} \text{ cm}^{-3}$
- Aims:
 - Determine the site of Fe in GaN
 - Determine the effect of Si co-dopant
 - Correlate with magnetic properties

Fe:GaN data

Low Fe content:

- only two Fe-N (R₁) and Fe-Ga (R₃) bonds.
- Fe substitutional; bond length in agreement with DFT for Fe³⁺

<u>High Fe content</u>

 Appearance of Fe-Fe (R₂) coming from a precipitated Fe_xN phase

Si,Fe:GaN data

- For the same Fe
 content Si co-doping
 prevents the
 formation of Fe₃N
- No evidence of the Fe-Fe bond at R₂

Si affects the charge state of Fe

- Si addition causes partial reduction of Fe³⁺ ions to Fe²⁺
- Notable ability of XAFS to determine structure and valence

Role of the growth temperature

• Higher growth temperature favours formation of Fe_xN and α -Fe

Fe:GaN conclusions (2010 paper)

- Magnetization due to various components, including one due to ferromagnetic nanocrystals of ε-Fe₃N, α-Fe, γ'-Fe₄N, γ-Fe₂N and γ-Fe
- Si codoping reduces the formation of Fe rich nanocrystals and permits a higher incorporation of Fe.
- Use new term: (Ga,Fe)N nanocomposites, not real doping

Metal precipitates in Si solar cells

Buonassisi et al, Nature Mat. 4, 676 (2005)

- Supply of high purity Si << demand
- Use of lower purity material
- Problem: impurities decrease efficiency
- μ-XRF and μ-XAFS to characterize metal precipitates and suggest processing to improve efficiency

μ -XRF & μ -XAFS: two defects

Processing & characterization

Best process: slow cool (5 °C s⁻¹) from 1200 °C mm sized, low density precipitates lead to greater carrier diffusion lengths

(µm)

Low Z dopants and XAS

- C, N & O often used as dopants
- Experimentally difficult: low fluorescence yield, soft X-rays, UHV

ALOISA beamline @ ELETTRA

Dilute nitrides: GaAs_{1-y}N_y, In_xGa_{1-x}As_{1-y}N_y

- Anomalous non-linear optical and electronic proprieties of III-V nitrides
- Red shift of the band gap by adding few % of nitrogen (≈ 0.05-0.1 eV per N atomic percent in InGaAsN)
- Huge and composition dependent optical bowing

Hydrogen – nitrogen complexes in dilute nitrides

• Hydrogenation leads to <u>reversible</u> opening of E_g

photoluminescence

Hydrogen – nitrogen complexes in dilute nitrides

 Which is the hydrogen –nitrogen complex responsible for these changes?

> Some candidate low energy structures

H– N complexes in dilute nitrides

- G. Ciatto, F. Boscherini, A. Amore Bonapasta, F. Filippone, A. Polimeni and M. Capizzi, Phys. Rev. B 71, 201301 (2005)
- M. Berti, G. Bisognin, D. De Salvador, E. Napolitani, S. Vangelista, A. Polimeni, M. Capizzi,
 F. Boscherini, G. Ciatto, S. Rubini, F. Martelli, and A. Franciosi, Phys. Rev. B 76, 205323 (2007)
- G. Ciatto, F. Boscherini, A. Amore Bonapasta, F. Filippone, A. Polimeni, M. Capizzi, M. Berti,
 G. Bisognin, D. De Salvador, L. Floreano, F. Martelli, S. Rubini, and L. Grenouillet, Phys. Rev. B 79, 165205 (2009)
- DFT calculations to determine lowest energy geometries
- Full multiple scattering XANES simulations
- Answer: C_{2v} like complexes are mostly present
- <u>3-D sensitivity of</u> <u>XANES!!</u>

XES now possible, a complementary tool with sensitivity to

- Valence band electronic structure
- Atomic structure
- New level of refinement in x-ray spectroscopy

Combined XAFS and XES

<u>XES</u>

- local VBM unchanged
- decrease of main peak in favor of lower energy states

<u>XAFS</u>

- main peak
 disappears
 and local
 CBM is
 strongly
 blue-shifted
- N states move far from the CBM

XAFS and XES simulations

Good news: all spectral features are ≩ well reproduced by:

- MS spectral simulations based on DFT atomic structure
- ab-initio DFT simulations of electronic and atomic strcuture

XAFS and alloys

- High resolution in probing the local coordination in first few coordination shells
- Study, as a function of composition
 - Deviation of local structure from average structure
 - Atomic ordering

Semiconductor alloys

- For example: In_xGa_{1-x}As
- Alloying leads to changes in
 - band-gap
 - lattice parameter

Lattice parameter (Å)

Vegard's law & Virtual Crystal Approximation

- The lattice parameter depends linearly on concentration: "Vegard's law"
- VCA: a linear and isotropic variation of the local structure with concentration
 - All atoms retain symmetric tetrahedral bonding

Bond lengths in In_xGa_{1-x}As

- The high resolution of EXAFS in determining bond lengths (0.01 Å) has shown that they stay close to sum of covalent radii
- Violation of the VCA
- First evidence of strong local structural distortions
- Mikkelsen Jr. and Boyce, Phys. Rev. Lett. **49**, 1412 (1982)

Origin of local structural distortions

• Local deformation potential:

 $V(\{R_{ij}\}, \{\theta_{ijk}\}) =$

$$\frac{\alpha}{2} \sum_{ij} (R_{ij} - R_{ij}^0)^2 + \frac{\beta}{8} R_e^2 \sum_{ijk} (Cos \,\theta_{ijk} + \frac{1}{3})^2$$

- For most semiconductors *a* » *b*
 - The covalent bond is stiff and directional

$Ga_{1-x}In_xP$ alloys

C. S. Schnohr, L. L. Araujo, P. Kluth, D. J. Sprouster, G. J. Foran, and M. C. Ridgway, Phys. Rev. **78**, 115201 (2008)

- 26 years later
 - Much better data
 - More
 sophisticated
 analysis
- Same conclusion!

XAFS and phase transitions

- Measure local structure through the phase transition
- XAFS has highlighted the difference between the real local structure and the average structure

Ferroelectric Phase transitions in PbTiO₃

Sicron, Ravel, Yacoby, Stern, Dogan and Stern, Phys. Rev. B 50, 13168 (1994)

low temp

- At T_c = 763 K PbTiO₃ undergoes tetragonal to cubic phase transition
- T < T_c it is ferroelectric (permanent dipole moment)
- Phase transition believed to be purely displacive (no local distortion for T > T_c)

Ferroelectric Phase transitions in PbTiO₃

- Ti and Pb XAFS data
- "Local lattice parameters¹ and local distortions do not change at T_c
 - c: sum of R(Ti-O₁)
 - a: calculated from R(Ti-O₂)
- Conclusion
 - local distortions survive above T_c
 - Above Tc random orientation of domains with permanent dipole moment

Phase change mechanism in optical media

Kolobov et al., Nature Materials 3, 703 (2004)

 Phase change optical discs used in DVD-RAMs are based on Ge₂Sb₂Te₅ (GST)

- Writing: appropriate laser pulses induce reversible phase changes from amorphous to crystalline
- Reading: the reflectivity of the two phases is different
- What is associated structural change?

Phase change mechanism in optical media

- Phase change is based on "umbrella flip" of Ge, from octahedral to tetrahedral coordination within Te fcc lattice
 - Three strong Ge Te covalent bonds remain intact
 - Weaker Ge Te bonds are broken by laser pulse
- Phase change in GST is fast and stable because the process does not require rupture of strong bonds or diffusion

Time resolved XAFS of phase change

Fons et al., Phys. Rev. B **82**, 041203 (2010)

- Sub nanosecond time resolved XAFS with mm spot size at SPring-8
- The intensity of the "white line" is different for crystalline, amorphous and liquid phases

Time resolved XAFS of phase change

- White line intensity versus time
 - 100 ps time resolution
- Phase change does not involve melting

Time resolved XAFS

- Strong recent push to develop time resolved XAFS down to the few 10 fs range
- 10 fs < vibration period of atoms in molecules / solids
- «Slicing» sources in storage rings
- Hard X-ray Free Electron Lasers
 ▶LCSL (California, USA)
 ▶SACLA (Japan)
 ▶XFEL.EU (Hamburg, Germany)
 ▶SwissFEL

TR-XAFS: spin cross over compounds

 Absorption of light causes transition between different spin states [Fe(bpy)₃]²⁺ (b) \ ____(METALTO-LIGAND

Slicing source at SLS: Bressler et al., Science **323**, 489–492 (2009)

: 50 ps

▲ : 300 fs

7150

X-Ray Probe Energy / eV

 $\Delta A \times 10^3$

a

b)

7100

HS

A / a.u.

04×10

TR-XAFS: spin cross over compounds

 Absorption of light causes transition between different spin states [Fe(bpy)₃]²⁺ (b) \ _____(METALTO-LIGAND

FEL at LCLS: Lemke et al., J. Phys. Chem. A **117**, 735–740 (2013)

Nano - XAFS

- Great recent advances in performing spatially resolved XAFS
- «X-ray nanoprobe» beamlines, e.g. ID16B @ ESRF, G. Martinez – Criado J. Synch. Rad. 23, 344-352 (2016).
- 100 nm resolution

Nano - XAFS

XAFS and thin films / interfaces

- With specific detection schemes sensitivity to very thin films achievable
 - Grazing incidence
 - Electron / fluo detection
- Exploit linear polarization of SR to obtain information on
 - Orientation
 - Lattice symmetry

Cubic and hexagonal GaN

- N K-edge XAS to study relative amounts of cubic and hexagonal GaN
- Exploit
 - linear polarization of SR
 - polarization dependence of crosssection
- XAS signal must exhibit (at least) point group symmetry of the crystal
 - T_d: isotropic signal

-
$$C_{6V}$$
: $\sigma^{tot}(E,\theta) = \sigma^{iso}(E) + (3Cos^2\theta - 1)\sigma^1(E)$

GaN

CUBIC

HEXAGONAL

• Katsikini et. al., APL 69, 4206 (1996); JAP 83, 1440 (1998)

C K edge XANES

Comelli et al., Phys. Rev. B 38, 7511 (1988)

 Transitions to π* molecular orbitals give rise to strong peak

Use of linear dichroism

• Intensity of peaks related to transitions to π^* orbitals depends on the orientation between the orbital and \vec{E}

 \vec{E}

Minimum intensity

C K edge XANES of graphite

- Very clear dependence
 of peak due to
 transitions to π*
 orbitals on orientation
- π^{*} are perpendicular to surface plane
- Rosenberg et al, Phys. Rev. B33, 4034 (1986)

Orientation of molecules on surfaces

- Typical application: determination of the orientation of molecules on single crystal surfaces
- N₂ on Ni(110)
- Molecules are "vertical"

XAFS and nanostructures

- XAFS is a local, short range, effect
 - Origin: core hole lifetime ($t_{hole} = 10^{-16} 10^{-15}$ s) and electron mean free path (5 10 Å).
- Same formalism applies to molecule, cluster or crystalline solid
 - insenstive to variations of morphology
 - sensitive to low thicknesses, high dilutions
- Excellent probe of variations in local environment due to
 - Size effects
 - Change 3D / 2D / 1D

Ge Quantum Dots

F. Boscherini, G. Capellini, L. Di Gaspare, F. Rosei, N. Motta, and S. Mobilio, Appl. Phys. Lett. **76**, 682 (2000)

- Need for understanding of local bonding
- Preparation:
 - Ge/Si(001) by CVD @ 600 °C, Univ.
 Roma Tre
 - Ge/Si(111) by MBE @450 550 °C, Univ. Roma II

Energetics of island formation

- Competing energies:
 - strain
 - surface
 - dislocations

- Contributions from:
- wetting layer
- islands

AFM of Ge dots

- Analysis of aspect ratio provides measurement of relative amount of relaxed islands
- Ge/Si(001): Full range of relaxation examined
 (b)

200

0

nm

100-

50-

0-

400

nm 200

0

O

400

nm

100-

50

0

400

nm 200

Quantum Dots: Ge edge XAFS

•Assuming <u>random alloy</u> average composition is Ge_{0.70}Si_{0.30}

Conventional SK growth

SK growth with interdiffusion

Metallic nanostructures

- One of the first applications of XAFS
- Exploits high resolution in first coordination shells

Clusters: bond length contraction

Apai et. al., Phys. Rev. Lett. **43**, 165 (1979)

FIG. 4. Variation in interaction distance as a function of particle size.

Montano et. al., Phys. Rev. Lett. **56**, 2076 (1986)

 A bond length contraction has been found for weakly supported metallic clusters (Ni, Cu, Au.....) for d < 100 Å

Bond length contraction

 \overline{R}

 $-\frac{2}{2}f\frac{\kappa}{2}$

- A macroscopic surface tension interpretation ("liquid drop") can explain the bond length contraction
 - f surface tension,
 k bulk modulus
 r radius of spherical particle
 - Montano et. al.
 Phys. Rev. B **30**, 672 (1984)
 Balerna et. al.,
 Phys. Rev. B **31** 5058 (1985)

Dynamic properties of Au clusters

 In the harmonic approximation, the Mean-Square-Relative-Displacement, σ², damps the EXAFS signal with a term

 $e^{-2k^2\sigma^2}$

$$\sigma_{0j}^2 = \left\langle \left| \left(\vec{u}_0 - \vec{u}_j \right) \bullet \hat{R}_{0j} \right|^2 \right\rangle$$

Dynamic properties of Au clusters

- As the cluster dimensions decrease an enhacement of σ^2 is evident
- Surface atoms have less motion constraints
- High surface-to-volume ratio for nanoclusters
- Values reproduced by numerical model for free sphere phonon DOS which includes surface modes
- Balerna and Mobilio, Phys. Rev. B 34, 2293 (1986)

Plasmonic Photocatalysis

International Edition: DOI: 10.1002/anie.201412030 German Edition: DOI: 10.1002/ange.201412030

Probing Long-Lived Plasmonic-Generated Charges in TiO₂/Au by High-Resolution X-ray Absorption Spectroscopy**

L. Amidani et al., Angew. Chem. Int. Ed. 54, 5413 (2015)

Surface plasmon resonance in Au NPs

- Sensitize TiO₂ to visible light by coupling TiO₂ with metallic nanoparticles to exploit the **surface plasmon resonance**
- Enhanced photocatalytic activity
- Origin?
 - PRET: Plasmonic resonant energy transfer
 - Hot electron transfer

Samples

(* 10⁸ (M s⁻¹)

- TiO₂ NP by sol gel method
 - Anatase from XRD and XANES
 - «white», «black» (O vacancies) and N – doped samples
- Au NP from HAuCl₄, 10% in weight
- Au NP: increase rate constant for degradation of formic acid

Differential RIXS experiment

- Ti K $_{\beta}$ (1s3p) RIXS, ID26 ESRF
- Dark / light, λ = 532 nm, 200 mW in 1 mm spot
- Au NP cause differences in dark – light TFY spectra
- Similar effect on pure and N-doped: <u>cannot be PRET</u> (not present in pure TiO₂)
- Strongest effect on A₂, linked to <u>defective low</u> <u>coordinated near surface</u> <u>sites</u>

Electron transfer from Au to TiO₂

Simulation by edge shift

- Assumes same lineshape
 - no structural rearrangement
 - ➢no core hole effect

One step further: different "cuts" in the RIXS plane

F. de Groot, *AIP Conf. Proceed.* 2007, 882, 37 – 43 D. Cabaret et al., Phys. Chem. Chem. Phys. 2010, 12, 5619 J. Vanko et al., arXiv:0802.2744, 2008

Interpretation

Hot electrons generated by SPR in Au are injected to Ti unoccupied orbitals by hot electron transfer on defective sites

Injected electrons in localized or de-localized orbitals have different effect

- De localized: small structural rearrangement/ small core hole effect
- Localized: greater structural rearrangement/great core hole effect

Conclusions

- XAFS has been used to address important structural issues in materials/nano science
- Areas of strong current development
 - $ightarrow \mu m$ spot size now available and decreasing fast
 - Time resolution in the 10 -100 ps range available and with FELs decreasing to 10 fs
 - Combined use of XAFS, XES & RIXS

Some useful review works by the author

- F. Boscherini, "XAFS in the study of semiconductor heterostructures and nanostructures" in Characterization of Semiconductor Heterostructures and Nanostructures, 2nd edition, edited by C. Lamberti and G. Agostini. ISBN 978-0-444-59551-5. DOI 10.1016/B978-0-444-59551-5.00007-8. Elsevier, 2013.
- F. Boscherini, "Dopants" in X-ray Absorption Spectroscopy of Semiconductors, edited by C.S. Schnor and M. Ridgway, Springer Series in Optical Sciences 190, 2015; ISBN-10: 3662443619 DOI 10.1007/978-3-662-44362-0_4. Springer, 2015.
- F. Boscherini, "Applications of XAFS to nanostructures and materials science", in Synchrotron Radiation: Basics, Methods and Applications, edited by F. Boscherini, C. Meneghini and S. Mobilio,. ISBN: 978-3-642-55314-1. DOI 10.1007/978-3-642-55315-8_17. Springer, 2015
- G. Ciatto and F. Boscherini, "Structure of nitrogen hydrogen complexes from x-ray and synchrotron radiation techniques" in Hydrogenated dilute nitride semiconductors: theory, properties and applications, edited by G. Ciatto, Pan Stanford Publishing, 2015. ISBN 978-981-4463-45-4
- F. Boscherini, "Semiconductors", in X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications, First Edition. Edited by J. A. van Bokhoven and C. Lamberti. Published 2015 by John Wiley & Sons.

Bologna

What is Bologna famous for?

• University: Alma Mater Studiorum –1088 AD

Guglielmo Marconi (1874 – 1937): radio

Luigi Galvani (1737 – 1798) bioelectricity

Guido Reni (1575 – 1642) painter

Lamborghini cars

Ducati motorbikes R

Mortadella

Tagliatelle al ragù

