Nanomaterials for biology and medicine

Αντιγόνη Αλεξάνδρου Antigoni Alexandrou antigoni.alexandrou@polytechnique.edu

Laboratoire d'Optique et Biosciences, Nanoimaging and cell dynamics team Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay 91128 Palaiseau Cedex, France

Institut national de la santé et de la recherche médicale

http://www.lob.polytechnique.fr

LOB

Nanomaterials for biology and medicine Outline

- Nano-objects for bioapplications (quantum dots, lanthanide nanoparticles, metallic nanoparticles, carbon nanotubes, polymeric nanoparticles, ...): properties, characterization, advantages/disadvantages

- Short introduction to biology
- Biological applications: single-molecule imaging in cells, sensing of cell parameters (Ca²⁺, ROS, pH)

- Biomedical applications (*in vitro* diagnostics, peroperative imaging, drug delivery, nanoparticle-sensitized radiation therapy)

Nanoparticle applications for biology and medicine

• Nanoparticles to observe and understand cell dynamics

Nanoparticles for biomolecule labeling and tracking Visualizing gene expression

Nanoparticles for sensing

- In vitro diagnostics
- In vivo applications

Peroperative imaging Drug delivery Nanoparticles to observe and understand cell dynamics Nanoparticles for single molecule tracking

Single molecule detection

Optical (lateral) resolution (limited by diffraction):

$$\Delta R = 1.22 \frac{\lambda}{2 \ N.A.} \quad N.A. = n \sin \theta$$

Typically : 200-300 nm

For single fluorescent objects

• the Airy disk can be fitted with a 2D Gaussian

 the center of the diffractionlimited spot can be determined from the Gaussian fit with a precision depending on the signal/noise ratio
 -> localization precision

down to 1 nm!

W. E. Moerner and D. P. Fromm, Rev. Sci. Instrum. **74**, 3597 (2003).

Diffusion of GABA receptors in nerve growth cones revealed by single-QD tracking

Alternating directed and Brownian motion

White-light transmission

Imaging of QDs labeling GABA receptors

C. Bouzigues

Red: QDs Green: Microtubules Blue: Nucleus

Use a **speed correlation index** to determine the portions of the trajectory corresponding to directed motion.

C. Bouzigues & M. Dahan, Biophys. J. 92, 654 (2007)C. Bouzigues et al., Proc. Natl. Acad. Sci USA 104, 11251 (2007)

Analysis using the mean square displacement (MSD)

Case a: directed diffusion with a constant

$$MSD(\Delta t) = 4D\Delta t + v^2(\Delta t)^2$$

<u>Case c</u>: free Brownian diffusion inside an infinitely high square well potential

$$x^{2}(t) = \frac{L_{x}^{2}}{6} - \frac{16L_{x}^{2}}{\pi^{4}} \sum_{n=1 \text{ (odd)}}^{\infty} \frac{1}{n^{4}} \exp\left\{-\frac{1}{2} \left(\frac{n\pi\sigma_{x}}{L_{x}}\right)^{2} t\right\}$$

$$|y^2\rangle(t) = \frac{L_y^2}{6} - \frac{16L_y^2}{\pi^4} \sum_{n=1 \ (odd)}^{\infty} \frac{1}{n^4} \exp\left\{-\frac{1}{2} \left(\frac{n\pi\sigma_y}{L_y}\right)^2 t\right\}$$

$$\sigma_x^2 = 2D_x, \qquad \sigma_y^2 = 2D_y, \qquad 4D = 2D_x + 2D_y$$

 $L_r^2 = L_x^2 + L_y^2.$

In all cases, the initial slope gives the diffusion coefficient D.

A. Kusumi et al, Biophys. J. 65, 2021 (1993).

M. J. Saxton, K. Jacobson, Annu. Rev. Biophys. Biomol. Struct. 26, 373 (1997).

Single biomolecule tracking Tracking proteins diffusing in the membrane

-> Diffusion coefficient D

Standard analysis: mean

Single biomolecule tracking Tracking proteins diffusing in the membrane

Potential felt by the receptor in addition to the diff. coeff.

Novel analysis based

on Bayesian inference

J.-B. Masson, ..., AA, PRL 2009; G. Voisinne, AA, Masson, Biophys. J. 2010

- S. Türkcan, AA, Masson, Biophys. J. 2012
- S. Türkcan, ..., Masson, AA, Biophys. J. 2012

Collaboration with J.-B. Masson and M. R. Popoff, Institut Pasteur, Paris

Different types of membrane compartmentation Cytoskeleton microdomains

K. Jacobson, E. Sheets & R. Simson, Science 268, 1441 (1995)

Confinement in the membrane Lipid rafts

Rich in cholesterol, sphingolipids and in lipids with saturated carbon chains

<image>

« The inner life of a cell », University of Harvard

Simons, K., and E. Ikonen, Nature 387:569–572 (1997).

Yildiz et al., Science **300**, 2061 (2003).

Single biomolecule tracking Tracking proteins diffusing inside the cell Kinesin « walking » on microtubules

Courty et al., Nano Lett. 6, 1491 (2006)

Imaging and tracking mRNA with « sticky flares »

Quenching of organic fluorophores by Au nanoparticles

Briley et al, Proc. Natl. Acad. Sci. USA 112, 9591 (2015)

Nanoparticles to observe and understand cell dynamics Nanoparticles for sensing intracellular parameters

Reactive oxygen species (ROS)

Nanoparticles for H₂O₂ sensing during cell signaling

Casanova, Bouzigues, Nguyen, Nat. Nanotech. 4, 581 (2009); Bouzigues et al., Chem. Biol. 21, 647-656 (2014)

ROS and Cancer: a complex interaction

• Chronic inflammation <-> Cancer (helicobacter pilori->gastric ulcer->gastric cancer)

Barry Marshall & Robin Warren, Nobel prize 2005 Crusz, S. M. & Balkwill, F. R. *Nat. Rev. Clin. Oncol.* 12, 584–596 (2015)

-> Anti-inflammatory approaches to treat cancer

- ROS oxidative stress -> enhanced mutation rates -> cancer cells
- ROS driving tumor initiation and progression

-> Anti-oxidant approaches to treat cancer -> Opposite results obtained

 ROS: Dual ability to promote <u>or</u> suppress tumor development in different contexts

Harris, Brugge, Nature (News & Views) 527, 170 (2015)

Sensing ROS with Eu-doped nanoparticles in vivo

in vivo inflammation model

ROS production *in vivo*

Flash at 2 min : methylsalicylate application At 7:30 min : luminescence recovery

Luminescence recovery in mouse ear experiments (N=6) => in vivo ROS detection

Förster resonant energy transfer (FRET)

Non-radiative energy transfer from the excited donor to the acceptor molecule via dipole-dipole coupling

In the presence of resonant energy transfer:

- decrease of donor emission
- increase of acceptor emission
- decrease of donor lifetime

Energy transfer depends on the 6th power of donor-acceptor distance

-> spectroscopic ruler

Prerequisites:

- Overlap between donor emission and acceptor absorption spectra
- Extensively used in biology to observe distance changes (2-10 nm):
- Interaction between biomolecules

- T. Förster, Annalen der Physik 2, 55 (1948)
- Conformational changes P. R. Selvin, *Methods in Enzymology*, Vol. 124, Academic Press (1995), p. 300

Förster resonant energy transfer (FRET) Nonradiative induced dipole – induced dipole interaction Point dipole approximation A hormonically coefficient state in the second state in the second state in the second state is a second state in the second state is a

A harmonically oscillating electric dipole p_D produces an electric field:

$$\hat{E}_{D}(\hat{r}) = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{k^{2}}{r} (\hat{r}_{0} \times \hat{p}_{D}) \times \hat{r}_{0} + \left[3\hat{r}_{0}(\hat{r}_{0} \cdot \hat{p}_{D}) - \hat{p}_{D} \left(\frac{1}{r^{3}} - \frac{ik}{r^{2}} \right) \right] e^{ikr} \qquad \hat{r} = \hat{r}_{0}r$$

D: donor

A: acceptor

R: distance between the two dipoles

In the near field ($r < \lambda$):

$$\hat{E}_{D} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{3\hat{r}_{0}(\hat{r}_{0} \cdot \hat{p}_{D}) - \hat{p}_{D}}{r^{3}} \right] e^{ikr}$$

Coupling with another point dipole $\overset{m{
m V}}{p}_{A}$:

Interaction
energy
$$V = -\beta_A \cdot \hat{E}_D = -\frac{1}{4\pi\varepsilon_0} \left[\frac{3(\hat{r}_0 \cdot \hat{p}_A)(\hat{r}_0 \cdot \hat{p}_D) - \hat{p}_A \cdot \hat{p}_D}{R^3} \right] e^{ikR}$$

Fermi's golden rule gives the transition rate from the donor excited state to the acceptor excited state: $\begin{aligned} &\langle i | = \langle D^* | \langle A | & \text{Initial state} \\ &\langle i | = \langle D^* | \langle A | & \text{Initial state} \\ &| f \rangle = |D \rangle |A^* \rangle &\text{Final state} \\ &\rho_f & \text{Density of final states} \end{aligned}$

Förster resonant energy transfer (FRET)

Energy transfer rate and efficiency

$$E = \frac{k_T}{k_T + k_D}$$

$$k_T = k_D \left(\frac{R_0}{R}\right)^6$$

E: efficiency of energy transfer (or FRET efficiency), defined as the probability for the excited donor to return to its ground state by energy transfer to the acceptor

 k_{T} : rate of energy transfer to the acceptor

 k_{D} : total rate of all other radiative and nonradiative donor decay processes $\tau_D = \frac{1}{k_D}$

 R_{0} : the distance R for which the energy transfer rate is equal to the donor excited-state decay rate

 $E = \frac{1}{1 + \left(\frac{R}{R_0}\right)^6} \qquad R_0 = 0.21 \left(Jq_D n^{-4} \kappa^2\right)^{1/6} \text{ (in Angstroms)}$ $J = \int \varepsilon_A(\lambda) f_D(\lambda) \lambda^4 d\lambda / \int f_D(\lambda) d\lambda \text{ in } \underline{M}^{-1} \text{ cm}^{-1} \text{ nm}^4$

 $R_0 \simeq 5-7 \text{ nm}$ Distance measurements: ~2-10 nm

J: normalized spectral overlap of the donor emission (f_D) and acceptor absorption (ϵ_A) in units of M⁻¹ cm⁻¹ κ^2 : depends on relative dipole orientation q_D : donor quantum yield, n: refraction index T. Förster, Annalen der Physik 2, 55 (1948)

P. R. Selvin, Annu. Rev. Biophys. Biomol. Struct. 31, 275 (2002)

P. R. Selvin. *Methods in Enzymology*. Vol. 124. Academic Press (1995). p. 300

Measurements of energy transfer efficiency

Rewording the FRET efficiency definition: E is the donor fraction de-excited via energy transfer to the acceptor

 $E = 1 - \frac{I_{D_A}}{I_D} \qquad \begin{array}{c} I_D: \text{ donor emission intensity in the absence of the acceptor} \\ I_{D_A}: \text{ donor emission intensity in the presence of the acceptor} \\ -> \text{ In ensemble measurements,} \end{array}$

Intensity measurements: beware of pitfalls intensities must be normalized for

concentration.

 $E = 1 - \frac{\tau_{D_A}}{\tau_D} \qquad \begin{array}{c} \tau_D : \text{excited-state lifetime of the donor in the absence of the acceptor} \\ \tau_{D_A} : \text{excited-state lifetime of the donor in the presence of the acceptor} \end{array}$

The lifetime approach is concentration independent.

Alternatively:

 $E = \frac{I_{A_D} / q_A}{I_{A_D} / q_A + I_{D_A} / q_D}$ I_{A_D} : FRET-induced acceptor emission intensity $q_{D(A)}$: Donor (acceptor) quantum yield

Beware of direct acceptor excitation

P. R. Selvin, Annu. Rev. Biophys. Biomol. Struct. 31, 275 (2002)

FRET donor-acceptor pairs

A large variety of FRET pairs exists:

- Dye->dye (ex. Cy3-> Cy5)
- Fluorescent protein-> fluorescent protein
- 4e-14 • Nanoparticle -> dye 1.2 3e-14 J(λ.) (cm³/m) • 1.0 2e-14 normalized PL/absorbance Quantum dot -> dye 1e-14 0.8 0 550 600 450 500 650 wavelength (nm) 0.6 510 QD PL 530 QD PL 0.4 555 QD PL Cy3 absorbance 0.2 DHLA CdSe 0.0 ZnS 550 600 650 700 450 500 wavelength (nm) Table 1. Overlap Integrals, Quantum Yields, and Calculated MBP 🕑 Ćy3

Förster Distances for MBP-Coated QD-Cy3 Pairs

	donor–acceptor pair	overlap integral, /×10 ¹³ (cm³/M)	quantum yield,ª <i>Q</i> D	Förster distance, <i>R</i> ₀ (Å)
H. Mattoussi group, Naval Res. Lab	510-Cy3	3.86	0.190	47.3
A. R. Clapp et al.,	530-Cy3	7.01	0.153	50.4
J. Am. Chem. Soc. 126, 301 (2004)	555-Cy3	8.91	0.239	56.5

Energy transfer from a QD donor to multiple organic acceptors

Sensing pH changes with QDs + FRET

Medintz, I. L., Mattoussi, H. et al., Quantum-Dot/Dopamine Bioconjugates Function as Redox Coupled Assemblies for in Vitro and Intracellular pH Sensing. Nat. Mater. 2010, 9, 676–684.

Sensing pH changes

Medintz, I. L., Mattoussi, H. et al., Quantum-Dot/Dopamine Bioconjugates Function as Redox Coupled Assemblies for in Vitro and Intracellular pH Sensing. Nat. Mater. 2010, 9, 676–684.

Measuring intracellular NADH concentrations

NADH indicates cell metabolic activity

Freeman, R.; Gill, R.; Shweky, I.; Kotler, M.; Banin, U.; Willner, VI. Biosensing and Probing of Intracellular Metabolic Pathways by NADH-Sensitive Quantum Dots. Angew. Chem., Int. Ed. 2009, 48, 309–313.

Measuring intracellular NADH concentrations

Freeman, R.; Gill, R.; Shweky, I.; Kotler, M.; Banin, U.; Willner, VI. Biosensing and Probing of Intracellular Metabolic Pathways by NADH-Sensitive Quantum Dots. Angew. Chem., Int. Ed. 2009, 48, 309–313.

Sensing Ca²⁺ with QDs and energy transfer (FRET)

Zamaleeva et al., Nano Lett. 14, 2994 (2014).

In vitro diagnostics

In vitro diagnostics with gold nanoparticles

Based on surface plasmons: collective electron oscillations

Mirkin et al., Science 277, 1078 (1997).

In vitro diagnostics with luminescent nanoparticles

Start-up project at Ecole polytechnique with M. Richly, C. Bouzigues, P. Preira, AA

In vivo applications

In vivo applications Peroperative sentinel lymph node imaging with near-infrared Quantum Dots

Color video

Near-infrared luminescence

Kim et al., Nat. Biotech. 22, 93 (2004).

In vivo applications Nanoparticle-based drug delivery

Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang,B.; Shen, Y. Q.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R.; Lodge, T. P.; Radosz, M.; Zhao, Y. L. Integration of Nanoassembly Functions for an Effective Delivery Cascade for Cancer Drugs. Adv. Mater. 2014, 26, 7615–7621.

Nanoparticles for drug delivery Passive drug delivery

Enhanced permeabilization and retention (EPR) in tumors

Nanoparticles for drug delivery Passive drug delivery

Enhanced permeabilization and retention (EPR) in tumors

Small organic molecules (chemotherapy drugs) can reach both healthy and tumoral tissues.

Nanoparticles (30-50 nm) can leave the blood circulation only when the blood cell wall is permeable. -> Nanoparticles preferentially enter tumoral tissue

Lower dosages necessary

Nanoparticles for drug delivery Drug nanocarriers must be biocompatible

Polymeric nanoparticles

Condensing nucleic acids (DNA, RNA) with positively charged cationic lipids to form nanoparticles

Inside a nanoparticle, nucleic acids are protected from degradation.

-> Gene therapy

Stimulus responsive drug release

M. H.; Shen, Y. Q.; Gu, Z. W. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Adv. Mater. 2013, 25, 3670–3676.

Stimulus responsive drug release

Enzymes (in abundance in pathological conditions, e.g. matrix metalloproteinases, exonucleases)

Stimulus

High concentrations of ATP and endonuclease EndoGI in tumor cells.

Zhang et al., Biocatalytic Release of an Anticancer Drug from Nucleic-Acids-Capped Mesoporous SiO₂ Using DNA or Molecular Biomarkers as Triggering Stimuli. ACS Nano 2013, 7, 8455–8468.

Stimulus-responsive drug release

Nanoparticles for drug delivery Active drug delivery

CO₂H

Nanoparticles for drug delivery Localized drug delivery

How ? _____ External magnetic field

Nanoparticles for drug delivery Stealthy to sticky transformation

Yuan, et al., Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Adv. Mater. 2012, 24, 5476–5480. Liu, X. SJ. Surface Tailoring of Nanoparticles via Mixed-Charge Monolayers and Their Biomedical Applications. Small 2014, 10, 4230–4242.

In vivo applications Nanoparticle-based drug delivery

Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang,B.; Shen, Y. Q.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R.; Lodge, T. P.; Radosz, M.; Zhao, Y. L. Integration of Nanoassembly Functions for an Effective Delivery Cascade for Cancer Drugs. Adv. Mater. 2014, 26, 7615–7621.

Therapy with inorganic nanoparticles Killing cells with external stimuli

Photodynamic therapy: Photosensitizers (type I, electron transfer; type II, singlet oxygen genaration)

Desired properties: high absorption coefficient, triplet state with appropriate energy to interact with triplet oxygen (S=1), high transfer efficiency to the triplet state, long lifetime of triplet state, high photostability, low dark cytotoxicity (aromatic hydrocarbons, quinones, prophyrins, transition metal complexes like $[Ru(bpy)_3]^{2+}$, ...) Using nanoparticles allows targeted delivery of photosensitizers

Plasmonic hyperthermia: Au NPs, nanoshells, nanorods, ... + light

Light absorption due to surface plasmons

N. B. Protein adsorption on the Au NPs modifies plasmon properties

Magnetic hyperthermia: magnetic NPs + external alternating magnetic fields

Typically iron oxide NPs Mechanical rotation of the whole NPs (Brown relaxation) Rotation of the magnetic moment inside the core (Néel relaxation)

N. B. Aggregation of NPs reduces heating effect

Typically heating effects are smaller in cells than in water.

Biocompatible nanoparticles for drug delivery Passive and active drug delivery

Nanoparticle-sensitized radiation therapy Tumor-selective radiosensitizers (EPR effect)

X-ray radiation therapy: less invasive than surgery and chemotherapy BUT : Both healthy and tumor tissues are exposed.

- Irradiate from multiple directions (multiport irradiation method)

- Use nanoparticles containing atoms that have large photoabsorption cross sections

Enhance photoabsorption by tuning the energy of the X-rays to the absorption edge of the

inner-shell electrons of these atoms Photoionization + Auger deexcitation

Efficient DNA repair system in oxidative conditions Unrepaired or mis-repaired DNA leads to cell death or genetic changes

Selective production of a less repairable type of DNA damage

High linear energy transfer LET (in keV/ μ m) leads to clustered DNA damage more difficult to repair. High LET is usually obtained with heavy ion particles.

Nanoparticle-sensitized radiation therapy

Tumor-selective radiosensitizers (EPR effect)

X-ray radiation can also produce high linear energy transfer by using high-Z atoms. High-Z atoms :

Higher total photoabsorption cross section

(Higher photoabsorption cross section for the inner-shell electrons)

Auger processes enhance the density of energy deposition events

Auger cascade, more Auger electrons are emitted from high Z-atoms (~30 from *Pl* after K-shell ionization)

-> Au, Pt NPs

Kobayashi et al., Mutation Research 704 (2010) 123–131

Nanoparticle-sensitized hadron therapy

Heavy-ion accelerators for **hadrontherapy**. Available only in few clinical centers.

Enhanced effects with Pt NPs: Enhanced e- emission Higher water radical production Higher double-strand breaks

Compare radiobiological effects by using the absorbed dose 1 Grey = 1 J absorbed per kg of matter

Porcel et al, Nanotechnology 21 (2010) 085103

Nanoparticles as platforms carrying multiple functionalities

Translational nanomedicine

TN = Translational Nanomedicine

B. Pelaz, ..., W. J. Parak, ACS Nano 2017, Diverse Applications of Nanomedicine, ACS Nano 2017, 11, 2313–2381

Regenerative medicine

Nanoengineered implants: Polymeric scaffolds +

- NPs to tailor mechanical rigidity

- Magnetic-NP loaded cells to control cell location and migration with external magnets

3D polymer scaffolds for

- Cell growth
- Stem cell differentiation

Neurons and cardiomyocytes growing on MWCNT networks

Huang, Y.-C.; Hsu, S.-H.; Kuo, W.-C.; Chang-Chien, C.-L.; Cheng, H.; Huang, Y.-Y. Effects of Laminin-Coated Carbon Nanotube/ Chitosan Fibers on Guided Neurite Growth. J. Biomed. Mater. Res., Part A 2011, 99A, 86–93.

Martinelli, V.; Cellot, G.; Toma, F. M.; Long, C. S.; Caldwell, J. H.; Zentilin, L.; Giacca, M.; Turco, A.; Prato, M.; Ballerini, L.; Mestroni, L. Carbon Nanotubes Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac Myocytes. ACS Nano 2013, 7, 5746–5756.