

ΣΕΜΙΝΑΡΙΟ

Observation of the Direct Energy Band Gaps of Defect Tolerant Cu₃N by Ultrafast Pump-Probe Spectroscopy

ΦΥΣΙΚΗ & ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

Δευτέρα 2.12.2019 στις 12:00 Αίθουσα συνεδριάσεων του τμήματος Φυσικής (4ος όροφος του κτιρίου της ΣΘΕ)

Prof. Matthew Zervos

Nanostructured Materials and Devices Laboratory, School of Engineering, University of Cyprus, Nicosia, Cyprus

Abstract

Cu₃N, Zn₃N₂ and Sn₃N₄ are earth abundant, metal nitrides, which are interesting from a fundamental and technological point of view but Cu₃N has been investigated in greater detail due to its unique properties that are attractive for energy conversion and storage. Cu₃N has a cubic a-ReO₃ crystal structure with a lattice constant of 3.8 Å and space group Pm3m, number 221. It is similar to the ABX₃ anti-perovskite structure with a vacant body-center position, so it can readily accommodate impurities and is a defect tolerant semiconductor. Here we show that Cu₃N with a cubic crystal structure can be prepared from Cu on fused SiO₂ under a flow of NH₃: O₂ between 400°C and 600°C. All Cu₃N layers exhibited distinct maxima in differential transmission at ~ 500 nm, 550 nm, and 630 nm, 670 nm with the same spectral structure and shape on an fs time scale as shown by ultrafast pump-probe spectroscopy. We show that the maxima at 630 nm (= 1.97 eV) and 670 nm (= 1.85 eV) correspond to the M and R direct energy band gaps of Cu₃N in excellent agreement with density functional theory calculations of the electronic band structure. In addition we suggest that the peaks at 500 nm (=2.48 eV) and 550 nm (=2.25 eV) most likely correspond to the M and R direct gap of certain regions of Cu₃N under strain that changes the lattice constant and band gap. We discuss the charge carrier generation and recombination mechanisms in terms of Cu interstitials and vacancies that are known to be energetically located near the band edges thus allowing the observation of the direct energy band gaps in this defect tolerant semiconductor. Finally we describe ongoing work on the synthesis and properties of Cu₃N nanoparticles prepared from Cu₂O nanoparticles.